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We present the current status of the research activities of the Ghent group on neutrino-nucleus
interactions. These consist in the modeling of some of the relevant neutrino-nucleus reaction
channels at intermediate energies: low-energy nuclear excitations, quasielastic scattering, two-
nucleon knockout processes and single-pion production. The low-energy nuclear excitations and
the quasielastic peak are described using a Hartree-Fock-CRPA (continuum random phase ap-
proximation) model that takes into account nuclear long-range correlations as well as the distor-
tion of the outgoing nucleon wave function. We include two-body current mechanisms through
short-range correlations and meson-exchange currents. Their influence on one- and two-nucleon
knockout responses is computed. Bound and outgoing nucleons are treated within the same mean-
field framework. Finally, for modeling of the neutrino-induced single-pion production, we use a
low-energy model that contains resonances and the background contributions required by chiral
symmetry. This low-energy model is combined with a Regge approach into a Hybrid model,
which allows us to make predictions beyond the resonance region.
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1. Introduction

Neutrinos interact only weakly. Therefore, one needs ashnmiatter as possible to detect
them with the desired statistics. The use of complex tangeide of medium-size nuclei, such as
mineral oils (CH), water, or liquid argon, allows for the accumulation ofg¢@f detector material,
what significantly increases the statistics in neutrin@cdteirs. As a consequence, past, current and
next generations of neutrino experiments (MiniBooNE, MRIE, T2K, MicroBooNE, DUNE,
NOVA) [1] use ‘complex’ nuclei as target material. This isattrings nuclear physics to the stage
of neutrino-oscillation physics.

Systematic errors are a pivotal problem in the aforemeationeutrino-oscillation experi-
ments. One of the most important sources of uncertaintiearipoor knowledge of the neutrino-
nucleus interaction. Currently, the neutrino-nucleustsoag cross sections, in the 1-5 GeV energy
region (intermediate energies), are known with a precisioinexceeding 20% [1]. Another major
problem is that the energy of the incident neutrino is unkmowhis implies that any theoretical ap-
proach that aims at describing the current and forthcom@drimo scattering data, has to contain
all the essential ingredients of the cross section. Atinggliate energies, the dominant reaction
channels are (see Fig. 1): low-energy nuclear excitatigiast resonances (GR), quasielastic (QE)
scattering, multinucleon contributions, pion productiand deep-inelastic scattering (DIS). The
probability that one or the other reaction mechanism wietalace depends on the energy trans-
ferred by the neutrino to the nucleus. This is sketched in Eig
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Figure 1. Electroweak nuclear response as a function of the energgfea The dominant channels are
collective nuclear excitations, QE peak, pion productdtg§ and a background from multinucleon contri-
butions (dominated by two-nucleon knockout reactions, Eijure adapted from [2].

2. Moddsand Results

In recent years, the research activities of the Ghent grawe focused on providing a de-
scription of some of the neutrino-nucleus reaction medmsithat are important at intermediate
energies. In particular, we have focused on the modelindi@flaw-lying nuclear excitations,
quasielastic scattering, two-body current contributjcarsd single-pion production. In what fol-
lows, we present an overview of our models and results.

2.1 Giant Resonance region and Quasielastic peak

The nuclear ground state is described within a Hartree-f&RRRA approach, i.e., the wave
functions of the bound nucleons are obtained by solving ttieré#linger equation with a self-
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consistent mean-field potential generated by an effeckiyense nucleon-nucleon interaction. Long-
range correlations, that account for collective nucleteat$ in the giant resonance region, are in-
troduced by a continuum random phase approximation (CRpgpach, where the same Skyrme
parameterization is used as interaction. The outgoingeoucis under the influence of the nu-
clear potential, hence, elastic final-state interactidtSlY are included. Other improvements to
the model, such as relativistic corrections and a dipolmfactor controlling the RPA strength at
largeQ?, have been implemented and are discussed in [3, 4, 5].
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Figure 2. Left panels: Inclusivé?C(e, €) data [6, 7] are compared with different model predictions. |
panels (a)-(b), we show HF and CRPA results. In panels (g)Ae compare RFG and CRPA predictions.
Figures adapted from Refs. [4, 8, 9]. Right panel: CRPA tesulthe MicroBooNE flux-folded double-
differential cross section for CCQE neutrifilAr and 12C scattering, at forward scattering angles. The
low-energy contributiond < 50 MeV) is shown separately. Figure adapted from Ref. [10].

The model has been benchmarked against electron scattitag In panels (a) and (b) of
Fig. 2, we show the effect of long-range correlations by carimg the Hartree-Fock (HF) with
CRPA results. The predictions are contrasted Wi(e, €) data. The effect of long-range corre-
lations is important at low-excitation energies [panel,(bptably improving the agreement with
data. Contrary, they induce only small corrections to trewébmean-field result at pure QE kine-
matics [panel (a)]. In the bottom panels, the CRPA predistiare compared with the relativistic
global Fermi gas (RFG) model [11, 12]. Distortion effectdith initial and final nucleon wave
functions, which are included in the HF and CRPA approachiesdt in the RFG model, are im-
portant at smalQ? [panel (b) and (d)]. Also, they are responsible for the taliserved above and
below the QE peak [panel (c)]. This comparison is intergsbecause Fermi-gas based models
are employed in many of the Monte Carlo neutrino event geoexdhat are used to extract the
neutrino oscillation probability from neutrino data.

It is, therefore, clear that a proper description of the Ewergy contributionse < 50 MeV)
needs sophisticated nuclear modeling. At forward scatjeaingles, these low-energy contribu-
tions contribute to a good amount of the total strength. &h&hown in the right panel of Fig. 2,
where we present the CRPA predictions for the single-difital CCQE neutrind®Ar cross sec-
tion, folded with the MicroBooNE flux. For forward anglesgetBtrength fromw < 50 MeV is
approximately 30- 50% of the total. Similar results are found for the T2K flux JE8 similar
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kinematics.

2.2 Two-nucleon knockout mechanisms; SRC and MEC

In our approach, two-nucleon knockout processes are indingeneans of short-range corre-
lations (SRC) and meson-exchange currents (MEC). Here pwanent on some relevant aspects
of our model, further details can be found in [14, 15].

The electroweak current operatbicontains the one-body and the MEC operatdrs; J; +
Jmee Short range correlations are introduced by applying aetation operatofs, which contains
central, spin-isospin and tensor parts, to the uncorcblatelear wave functiof®): |W) ~ G|d),
with |W) the correlated wave function. The complexity introducedh®sy SRCs is then shifted to
the current operator, which results in an effective curggratorders ~ G (J1 + Jned G. This
allows us to consistently account for the SRC-MEC interfeeeterms. We also stress that in
our approach i) initial and final nucleons are HF mean-field#enanctions, i.e., they are bound
and scattering solutions of the Schrédinger equation irstlee mean-field potential; and ii) we
calculate the effect of SRC and MEC in both the one-nucleatkout and two-nucleon knockout
responses.

In Fig. 3 we present the double differential cross sectiotded with the MiniBooNE and T2K
fluxes. We have shown separately the one-nucleon knockspbnse (CRPA), and the two nucleon
knockout responses (MEC and SRC). Delta currents are natglatled in the MEC contributions.
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Figure3: MiniBooNE CCQE (left) and TK2 inclusive (right) double dffential cross sections are compared
with our predicitons. Data from [16, 17]. Figures adaptexifrRef. [15].

2.3 Single-pion production

Single-pion production cross sections are described nmvitthe Hybrid-RPWIA model pre-
sented in Refs. [18, 19]. The starting point is the desanptf the elementary reaction with a
microscopic low-energy model similar to that of Ref. [20Jhieh includes resonances and back-
ground contributions. This low-energy model is combinethwi Regge approach that provides the
right behavior of the scattering amplitude at high energigse current operator of the elementary
reaction is then included in a nuclear framework by usingafRastic Mean-Field (RMF) wave
functions for the bound nucleons [19, 21].

We summarize its main features as follows. (i) The procesggssribed in a fully relativistic
framework. The nucleon bound-state wave are RMF wave fomstitherefore, in-medium effects
like Fermi motion and nuclear binding are consistentlyudeld. (i) Since the formalism works
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at the amplitude level, it can provide predictions for coet@lkinematics. (iii) The high-energy
behavior is dictated by Regge phenomenology, this way gutie pathological behavior often
observed when low-energy models are extended to a highegyeregime. This is illustrated in
panels (a) and (b) of Fig. 4 by comparing the results fromalednergy model (dashed lines) with
the ones from the Hybrid model (solid lines). Panel (a) showsprediction for thev-induced Ir"
production on a hydrogen target, while panel (b) presemrtsahults for the same reaction channel
but with the MiniBooNE target CH

FSI are not taken into account in the Hybrid-RPWIA model, kusrin progress to amend this.
To judge the effect of FSI on the cross sections we study thdtssfrom the NuWro Monte Carlo
(MC) event generator [22] calculated with and without FSiisTis shown in panels (c) and (d)
of Fig. 4 for the single-differential cross section foldedhaMiniBooNE and MINERVA fluxes,
respectively. The lower limit of the red band correspondthécalculation when the delta-decay
width is modified to account for in-medium effects, accogdio the Oset and Salcedo prescrip-
tion [23]. The upper limit is the calculation with the freecdg width.
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Figure 4: Panels (a) and (b) show the total cross section computedthéthlybrid and low-energy mod-
els for the CCv-induced Ir™ production on proton [panel (a), data from [24]] and on theniBooNE
CH, target [panel (b), data from [25]]. Panel (c) is the flux-fedidsingle differential cross sections for the
MiniBooNE vCC 1t [26] and MINERVAVCC 1r1° [25] samples. Figures adapted from Refs. [18, 19].

Summarizing, we have presented an overview of the receel@awents of the Ghent group
on the different reaction mechanisms involved in neutringleus interaction at intermediate en-
ergies. Work is in progress to complete the MEC calculatipimniluding the delta currents, and
to implement FSI in the pion-production model.
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