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We present a general purpose, parton-level Monte Carlo program for the calculation of the radia-

tive (L → νν̄ l+γ) and rare (L → νν̄l′+ l+l−) muon and tau decays at NLO in the effective Fermi

theory with L∈ {τ,µ} and l, l′ ∈ {µ ,e}. In the case of muon, these processes are irreducible Stan-

dard Model backgrounds to searches for lepton flavour violation at the PSI experiments MEG and

Mu3e as they become indistinguishable from the corresponding signals when the neutrinos carry

little energy.

Furthermore, we argue that fully differential NLO corrections are very important for the analysis

of measurements aiming at the percent level or better. This is especally true if very stringent

phase-space cuts are applied. To illustrate this, we use a tension between BABAR’s recent mea-

surement of the radiative tau decay and the Standard Model prediction as an example of such an

analysis. Finally, we present the branching ratios of the rare tau decay τ → νν̄ l′l+l− at NLO.

We generally find that QED corrections of O(10%) are very well possible.
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1. Introduction

Muon decays have a long and rich history in particle physics and will no doubt continue to play

an important rule. Their study, both experimentally and theoretically, helped to precisely determine

standard model quantities like the Fermi constant GF and severely constrain lepton flavour violating

(LFV) new physics [1]. While radiative corrections to the Michel decay are available for many

decades, NLO results for the radiative µ → νν̄eγ and rare µ → νν̄ee+e− decay have only been

published in the last two years [2, 3, 4, 5].

In the case of τ decays, precision measurements at the percent level are available. Especially

for the radiative τ decay there has been a discrepancy at the level of several σ .

Here we will review the rare and radiative lepton decays in their role as SM background pro-

cesses to the searches for LFV by the experiments MEG [6] and Mu3e [7, 8] and further stress the

importance of fully differential calculations.

The framework of our calculation is the QED Lagrangian augmented with the Fierz rearranged

effective Fermi interaction

L = LQED +
4GF√

2

(

ψ̄eγµPLψµ

)(

ψ̄νµ γµPLψνe

)

+h.c. , (1.1)

where PL = (1− γ5)/2 is the usual left-handed projector. The QED part contains the necessary

lepton fields, i.e. ψµ and ψe. Even though this is an effective field-theoretical description of

the underlying electroweak interaction, it has been shown by Berman and Sirlin [9] that QED

corrections are finite at all orders and that GF does not need to be renormalised. Unless noted

otherwise, we keep the electron mass me 6= 0.

We compute the one-loop diagrams with a modified version of GoSam [10, 11, 12] as well

as FeynArts [13], FormCalc [14] and LoopTools [15]. Infrared singularities in the real

corrections are dealt with using FKS subtraction [16, 17]. Finally, we integrate the phase space

using VEGAS [18]. This allows us to create arbitrary distributions involving arbitrary cuts. Further

details regarding the implementation are available in [4, 5].

2. Radiative tau decay τ → νν̄eγ

Aside from being an important background to searches for µ → eγ , the radiative lepton decays

L → νν̄ l + γ can be used as an example to illustrate why fully differential Monte Carlo programs

are important. This can be seen best in the radiative tau decay τ → νν̄e+ γ which was measured

by BABAR [19]. As observed by Fael, Mercolli and Passera [2], the measured value and the NLO

branching ratio disagree at around 3.5σ .

Experimentally, the following happens: a pair of tau leptons is created in e+e− collisions at√
s = Mϒ(4S) = 10.58 GeV. One of the taus is used for tagging, while the signal is measured with

the other tau. Very stringent cuts are imposed on the signal tau in the centre-of-mass frame of the

e+e− pair to reduce background events

cos θ∗
eγ ≥ 0.97, 0.22 GeV ≤ E∗

γ ≤ 2.0 GeV, Meγ ≥ 0.14 GeV . (2.1)
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By implementing these cuts in our Monte Carlo program, we will see, that the NLO corrections

will have an important effect when ‘undoing’ the cuts, i.e. when extracting exclusive branching

ratio1 Bexcl (with only the cut Eγ ≥ 10 MeV in the tau rest frame).

To account for this effect we use the following simplified scheme: assume that Nobs events

passed the cuts (2.1). To transform Nobs into a branching fraction, it is multiplied by a factor ε
exp
LO

B
LO
exp = ε

exp
LO ·Nobs = εdet · εLO ·Nobs = 1.834(1) ·10−2 . (2.2)

Detector effects are assumed to be described by εdet while εLO is a purely theoretical factor that

converts the fiducial branching ratio to the desired value. The computation of this factor can be

done both at LO and NLO

εLO =
Γ10MeV

LO

Γfiducial
LO

∣

∣

∣

∣

theory

= 48.55(1) , εNLO =
Γ10MeV

NLO

Γfiducial
NLO

∣

∣

∣

∣

theory

= 44.80(1) , (2.3)

where Γ10MeV (Γfiducial) refers to the 10MeV (fiducial) cut. We can calculate the value of Bexp

applying an NLO Monte Carlo

B
NLO
exp =

εNLO

εLO

·BLO
exp = ε ′ ·BLO

exp = 1.704(50) ·10−2 , (2.4)

with ε ′ = 0.923(1). This reduces the discrepancy from 3.5σ to 1.2σ .

Obviously, this is only a very simplistic and by far not complete simulation of the full analysis.

Hence, we do not claim that this is the conclusive resolution of the discrepancy. However, we do

point out that even in QED a proper inclusion of NLO effects is mandatory for a precision around

the percent level. Further details of this analysis can be found in [5]. In light of recent B-anomalies

it is worth noting, that QED corrections can be large and should be included whenever possible.

3. Radiative muon decay µ → νν̄eγ

Let us first look at the PiBeta experiment [20], which used

Eγ ≥ 10MeV and ∢(~pγ ,~pe) > 30◦ .

While the PiBeta measurement offers sub-percent precision, it was noted before [5, 21] that there

is a significant disagreement between the quoted value for the standard model and our calcula-

tion. However, we can reproduce the quoted standard model value if we redo our calculation with

vanishing electron mass me = 0 and the inclusion of a factor to account for conversion into an

e+e− pair [22]. Using the approach explained above, we can convert the PiBeta measurement of

Bπβ = 4.365(42) ·10−3 into

B
∗
πβ = ε ′

πβ Bπβ = 4.18(4) ·10−3

which is compatible with the theoretical prediction of B = (4.26−0.04NLO) ·10−3.

We can use these considerations to compare and contrast all major measurements of the radia-

tive muon decay that are currently listed in the PDG. This is shown in Table 3.

1We always normalise the branching ration to the measured life time and not its LO order result
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Experiment ε Bmeas. 102 · ε ·Bmeas.

MEG [6] 2.2 ·105 6.0(5) ·10−8 1.3(1)

PiBeta [20] 2.9 4.18(4) ·10−3 1.27(1)

[23] 1.0 1.4(4) ·10−2 1.4(4)

Average 1.27(1)

Table 1: Various measurements of the radiative muon decay related the canonical configuration with Eγ ≥
10MeV using the kinematic acceptance ε = Bth(10MeV)/Bth(fiducial)

For MEG, which uses 85% polarised muons, we define the~z axis along the muon polarisation,

i.e. ~Pµ =−0.85~z. We now can model the cuts used by the MEG experiment as

Eγ > 40MeV , Ee > 45MeV , (3.1a)

|cos∢(~pγ ,~z)| ≡ |cos θγ |< 0.35 , |φγ |>
2π

3
, (3.1b)

|cos∢(~pe,~z)| ≡ |cos θe|< 0.5 , |φe|<
π

3
. (3.1c)

Further, we require that exactly one photon with an energy larger than the detector threshold of

roughly 2MeV hits the detector. Therefore, we reject a second photon that hits the detector if its

energy is larger than 2MeV, i.e.

Eγ2
<

{

2MeV if (3.1b) is satisfied

∞ otherwise
. (3.1d)

This allows us to calculate for example the distribution w.r.t. the invisible energy E/= mµ −Ee−Eγ

as shown in Figure 2. The corrections are fairly large O(5−10%) but always negative. This means

that a background study that only used a LO calculation will actually produce a more conservative

approximation.

4. Rare muon decay µ → νν̄ee+e−

For the rare decay we use

Ee± > 10MeV and |cos∢(~pe± ,~ez)|< 0.8 (4.1)

to roughly approximate the Mu3e detector [8]. We can again create the invisible energy distribution

as shown in Figure 3. The corrections are again very large for QED but still negative in the region

of any potential signal.

While the observation of µ → eee would be a clear indication of physics beyond the standard

model, we would like to propose a different way to use a precise measurement of the rare muon de-

cay to search for light new mediators: the Lorentz structure of a new mediator could be encoded in

angular distributions of the e+e− pair. This is especially promising because theoretical uncertain-

ties on these observables are very small as they only receive small corrections at the percent level.

Furthermore, these corrections are very flat and barely distort the distribution’s shape. Therefore,

we can expect that the NNLO corrections to the shape would be well below the per-mille level.
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Figure 2: The invisible energy spectrum for MEG in blue at NLO, the K-factor as the ratio between NLO

and LO in orange and in green a mock-up of how LFV would look like at the current limit BNP ≃ 4.2 ·10−13

accounting for a 1.7% energy resolution.
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Figure 3: The invisible energy spectrum for Mu3e in blue at NLO, the K-factor as the ratio between NLO

and LO in orange and in green a mock-up of how LFV would look like at the current limit BNP ≃ 10−12

accounting for a 0.5MeV energy resolution.
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5. Rare tau decay τ → νν̄ l′l+l−

The rare tau decay τ → νν̄ l′ll has a richer phenomenology than the muon decay because more

decay channels are possible. In fact, a plethora of tree-level calculations have been published using

a variety of techniques [24, 25, 26]. On the other hand, experimental data is scarce. Nevertheless,

we have used our program to calculate all four rare leptonic tau decay channels at NLO. Our results

are summarised in Table 4 and compared with [25]. While our result includes all mass-effects it

is not clear how reference [25] treated the light lepton’s mass which cannot be set to zero because

that would give rise to IR singularities. When computing the radiative corrections we have all three

lepton-flavours active but neglect hadronic corrections because a rough estimate shows that they do

not change the overall picture [4].

This work [25]

LO δB/B

105B(τ → νν̄eee) 4.2489(1) -0.094% 4.22(2)

107B(τ → νν̄µee) 1.9879(2) 1.1 % 1.987(3)

105B(τ → νν̄µµe) 1.2513(2) 1.2 % 1.246(2)

107B(τ → νν̄µµµ) 1.1838(1) 1.9 % 1.184(1)

Table 4: The branching ratio of the rare tau decays computed at LO (by us and [25]) and NLO. We neglect

hadronic corrections.

6. Conclusion

We have reviewed the NLO QED predictions for radiative L → lνν̄ + γ and rare L → lνν̄ +

l+l− lepton decays with L ∈ {τ ,µ} and l, l′ ∈ {µ ,e}. In particular, we emphasise the importance

of radiative corrections in unfolding fiducial acceptance when comparing experimental values with

the PDG.

Furthermore, our program is able to calculate arbitrary differential distributions. For the ex-

periments MEG and Mu3e, the corrections to these distributions is usually at the percent level. But

especially in the critical regions of phase space they can easily reach O(10%).
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