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Introduction

The study of higher-spin gauge theories has a long history. Since the early works in the 1930’s
of Majorana [1], Dirac [2], Fierz [3] together with Pauli [4], and Wigner [5], by now the free
propagation of higher-spin gauge fields is rather well understood (for instance see: [6–20]). On the
other hand, the question of constructing consistent interactions among them is a highly non-trivial
one (for a review see [21]).

One of the main motivations for studying higher-spin gauge theories is the on-going quest
for a UV-complete theory of gravity. Indeed, upon the addition of higher-derivative counter-terms
to the Einstein-Hilbert action,1 to avoid violations of causality at the classical level we are led
to introduce an infinite tower of massive particles of spins s > 2 [22, 23]. One may then expect
an underlying higher-spin symmetry principle governing the high-energy behaviour of the theory,
whose spontaneous breaking would generate the lower energy spectrum of massive higher-spin
states. This picture was also motivated from a String Theory perspective by Gross [24] in the
1980’s.

Higher-spin gauge theories have generated an increased interest in the last two decades, owing
in particular to their role in the celebrated AdS/CFT correspondence [25–27]. Theories of higher-
spin gauge fields on anti-de Sitter backgrounds have been conjectured to be dual to very simple,
free, Conformal Field Theories [28–31]. This has the potential to provide a powerful framework to
acquire a deeper understanding of AdS/CFT, and also into higher-spin gauge theories themselves.

In these notes we will focus on the latter. In particular, we review some recent efforts [32–35]
aimed at using holography to study interactions of higher-spin particles.2 To this end, we introduce
some useful tools for computing tree-level amplitudes in AdS involving fields of arbitrary integer
spin. These are underpinned by the so-called ambient space formalism introduced by Dirac in the
1930’s [39], in which anti-de Sitter space is viewed as a one-sheeted hyperboloid embedded in a
higher-dimensional flat space. In order to be self-contained, we also review relevant aspects of the
AdS/CFT correspondence and the basics of higher-spin particles on AdS.

1. Higher Spin Particles in AdS

1.1 The AdS Geometry and Isometry Group

From the holographic view point taken in these lectures, we are interested in particles propa-
gating on a (d +1)-dimensional anti-de Sitter (AdSd+1) background, which can be regarded as the
hyperboloid3

−X2
0 −X2

d+1 +
d

∑
i=1

X2
i =−R2, (1.2)

1For example, at one-loop one includes the Gauss-Bonnet term.
2For related works by other authors see [36–38].
3The length scale R is known as the AdS radius, which is related to the cosmological constant Λ via

Λ =−d (d−1)
2R2 < 0. (1.1)
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embedded in an ambient (d +2)-dimensional flat space time with metric

ds2 = ηABdXAdXB =−dX2
0 −dX2

d+1 +
d

∑
i=1

dX2
i , (1.3)

where ηAB = diag(−++ · · ·+−) and A,B = 0,1, ... ,d+1. More concretely, denoting the intrinsic
co-ordinates on our hyperboloid (1.2) by xµ (with µ = 0, ...,d), we are making a smooth isometric
embedding

i : Hd+1 ↪−→ Rd+2 : xµ 7−→ XA (xµ) . (1.4)

From the above we can see that AdSd+1 space is homogeneous and isotropic, with isometry group
SO(d,2). The corresponding algebra consists of the 1

2 (d +1)(d +2) generators

iJAB =−iJBA =

(
XA

∂

∂XB −XB
∂

∂XA

)
, (1.5)

which satisfy the commutation relations

[JAB,JCD] = i(ηBCJAD +ηADJBC−ηACJBD−ηBDJAC) , (1.6)

with ηAB = diag(−++ · · ·+−), known as ‘conformal signature’. For calculations it is often con-
venient to work in Euclidean AdS, which can be reached by instead working in an ambient space
Lorentzian signature ηAB = diag(−+ · · ·+).

It is often convenient to use the following basis for the so(d,2) generators (1.6),

Mi j = iJi j, P±i = J0i± iJi(d+1), E = J0(d+1), (1.7)

with commutators (all others are vanishing)[
E,P±i

]
=±P±i ,

[
Mi j,P±k

]
= δk jP±i −δkiP±j , (1.8)

[Mi j,Mkl] = δikM jl +δ jlMik−δ jkMil−δilM jk,
[
P+

i , P−j
]
= 2Mi j−2δi jE, (1.9)

where i, j = 1, ...,d.

Euclidean AdS in Poincaré Co-ordinates

For concreteness, the co-ordinate system we’ll most often use is Euclidean AdS in Poincaré
co-ordinates xµ =

(
z,yi
)
. With this choice our hyperboloid (1.2) is parameterised by

X0 (x) = R
z2 + y2 +1

2z
(1.10)

Xd+1 (x) = R
1− z2− y2

2z
(1.11)

X i (x) =
Ryi

z
. (1.12)

Pulling back the ambient metric ηAB one recovers the AdS metric in Poincaré co-ordinates

ds2 =

(
∂XA

∂xµ

∂XB

∂xν
ηAB

)
dxµdxν =

R2

z2

(
dz2 +δi jdyidy j) , (1.13)
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where we used the Lorentzian signature ηAB = diag(−+ · · ·+).

The usual AdS Killing tensors can be obtained in Poincaré co-ordinates by noting that

η
AB ∂

∂XB = gµν ∂XA

∂xν

∂

∂xµ
− XA

R2 X ·∂X , (1.14)

which gives

iJAB = gµν

(
XA ∂XB

∂xν
−XB ∂XA

∂xν

)
∂

∂xµ
(1.15)

=
z2

R2

[(
XA ∂XB

∂ z
−XB ∂XA

∂ z

)
∂

∂ z
+δ

i j
(

XA ∂XB

∂y j −XB ∂XA

∂y j

)
∂

∂yi

]
.

For example, one recovers

iE = J0(d+1) = z∂z + y ·∂y. (1.16)

1.2 The Conformal Boundary

Figure 1:

Towards the AdSd+1 boundary, the hyperboloid (1.2) asymptotes to a light cone in the flat
ambient space (see fig. 1). While this limit does not yield a well-defined boundary metric (see
(1.13) for z→ 0), we can obtain a finite limit by considering the projective cone of light rays with
co-ordinates

PA ≡ εXA, ε → 0. (1.17)

Since X2 is fixed, these null projective co-ordinates satisfy

P2 = 0, P ∼ λP, λ 6= 0, (1.18)

3
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where in general λ depends on P. The right-most statement tells us that, being rays, P and λP are
identified. This quotienting of the null cone identifies the P with d-dimensional Minkowski space
(with a point at infinity added) or any conformally flat manifold.4

In particular, the AdS boundary is parameterised by a Poincaré section of the null cone: P+ =

Pd+1 +P0 = constant. With the gauge choice P+ = 1, we have

P0 (y) =
1
2
(
1+ y2) , Pd+1 (y) =

1
2
(
1− y2) , Pi (y) = yi. (1.19)

This is illustrated in fig. 1. The SO(d,2) isometry of AdS acts on the co-ordinates P as a group
of conformal symmetries, with a given transformation relating the section (1.19) to others with
dP+ = 0.

The usual conformal generators on the boundary are recovered from

iJAB =−iJBA =

(
PA

∂

∂PB −PB
∂

∂PA

)
, (1.20)

and identifying the combinations (1.7). Like for the AdS Killing tensors in the previous section
§1.1, one can use that

η
AB ∂

∂PB =

(
∂PA

∂yi
∂PB

∂yi −QAPB−QBPA
)

∂

∂PB

= δ
i j ∂PA

∂yi
∂

∂y j −QAP ·∂P−PAQ ·∂P,

where we employed (3.17) with QA = (1,0,−1). This gives

iJAB =

(
PA ∂PB

∂yi −PB ∂PA

∂yi

)
∂

∂yi +
(
PBQA−PAQB)y ·∂y, (1.21)

where one notes that P ·∂P = y ·∂y. For example, for dilatations we recover

iE = iJ0(d+1) = y ·∂y. (1.22)

1.3 Unitary Irreducible Representations: Particles in AdS

All possible types of elementary particles are defined by unitary irreducible representations
(UIRs) of the space-time isometry. For studying the UIRs of the AdS isometry, it is useful to em-
ploy the basis (1.9) for the so(d,2) generators. Since we are interested in unitarity representations
of so(d,2), the required Hermiticity condition J†

AB = JAB translates into

E† = E,
(
P±
)†

= P∓, M†
i j =−Mi j. (1.23)

Generators E and Mi j comprise the maximally compact subgroup, SO(2)× SO(d), of SO(d,2).
E gives rise to rotations in the purely time-like (X0,Xd+1) plane and therefore identified with the

4Note that these redundant rescalings by λ (y) are equivalent to sending ε → ε/λ , so P→ λ (y)P rescales the
metric by an overall factor – as per the definition of a conformal transformation. The redundancy can thus be used
to determine the transformation properties of a function f (P) under a dilatation. If f has scaling dimension ∆, then
f (λP) = λ−∆ f (P).
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Hamiltonian for AdS physics. The Mi j give rotations of Sd−1 and are angular momentum genera-
tors. The remaining non-compact generators P± raise and lower the energy eigenvalue by one unit
respectively, as can be seen from the [E,J±] commutator in (1.8).

UIRs of the AdS isometry group are thus labelled by the energy eigenvalue ∆ and spin s of its
ground state |∆,s〉

E|∆,s〉= ∆|∆,s〉, P−|∆,s〉= 0, (1.24)

which forms a unitary module of the so(2)⊕ so(d) maximally compact sub-algebra. The spin
s characterises the so(d) module, which is generically given by a collection of positive integers
s = (s1, ...,sr) corresponding to the so(d) Young diagram

· · · · · · · · · s1

· · · s2
...

...
...

· · · sr ,

(1.25)

with s1 ≥ s2... ≥ sr. For the purpose of these lectures (and from this point onwards) we only
consider totally symmetric spin-s representations Vs, which concern only the single row Young
diagrams s = (s,0, ...,0),

· · · · · · s . (1.26)

Given the ground state (1.24) of our spin-s particle, we can construct excited states furnishing the
representation Fock space by applying the raising operator P+. The complete so(d,2) module
D (∆,s) is therefore spanned by states of the schematic form5

|∆,s〉n,l =
(
P+ ·P+

)n P+
i1 ...P

+
il |∆,s〉, n, l = 0,1,2... , (1.27)

with energy eigenvalue ∆+2n+ l. Note that |∆,s〉0,0 = |∆,s〉.

Exercise 1.1: Quadratic Casimir

Casimir operators of a given Lie algebra are distinguished operators which commute with each
generator. Their eigenvalues thus characterise the irreducible representations, taking the same
value for any state in a given representation.

The quadratic Casimir of the AdSd+1 isometry algebra is given by

C2 (so(d,2))≡ 1
2

JABJAB = E (E−d)+C2 (so(d))−δ
i jP+

i P−j . (1.28)

Given that the so(d) Casimir6 C2 (so(d)) =−1
2 Mi jMi j has eigenvalue

〈C2 (so(d))〉= s(s+d−2) , (1.29)

5In particular this is schematic for l > 0, as, strictly speaking, the indices should be symmetrised in order to be
irreducible SO(d) tensors.
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on totally symmetric spin-s representations Vs, show that

〈C2 (so(d,2))〉= ∆(∆−d)+ s(s+d−2) , (1.30)

for states in the module D (∆,s).
Show also that

C2 (so(d,2)) = R2�AdS +C2 (so(d,1)) , (1.31)

where �AdS = ∇µ∇µ is the covariantised d’Alambertian operator in AdS and C2 (so(d,1)) is
the quadratic Lorentz Casimir in (d +1)-dimensions.

In the language of QFT, to our spin-s particle on AdS is associated a rank s field ϕµ1...µs which,
as a carrier of D (∆,s), is totally symmetric and satisfies the Fierz-Pauli conditions

(C2 (so(d,2))−〈C2 (so(d,2))〉)ϕµ1...µs = 0 (1.32a)

∇µ1ϕµ1...µs = 0 (1.32b)

gµ1µ2ϕµ1...µs = 0. (1.32c)

The final two conditions ensure that ϕµ1...µs sits in Vs, the totally symmetric irreducible spin-s
representation of SO(d). From the first condition (1.32a) one deduces the equation of motion (see
exercise 1.1 above) (

∇
2−m2

s
)

ϕµ1...µs = 0, (msR)
2 = ∆(∆−d)− s. (1.33)

Recall that R is the AdS radius.

Unitarity Bounds and Higher Spin Gauge Fields

Let us emphasise that representations are only unitary for a certain range of ∆. Outside of
this, negative norm states appear in the Hilbert space. Unitarity bounds on ∆ can be obtained by
demanding positive norm for every state in the multiplet, which we detail below.

It is sufficient to consider the norm of the first level descendants,(
P+

i |∆,s〉
)† P+

j |∆,s〉= 〈∆,s|P
−
i P+

j |∆,s〉= 2∆δi j−2Σi j, (1.34)

where we used the so(d,2) commutator (1.9) and Mi j|∆,s〉a = (Σi j)
a

b|∆,s〉b, with a,b indices for
the SO(d) representation Vs of |∆,s〉. For unitarity we require that (1.34) is positive definite, which
implies

∆≥max. Eigenvalue [(Σi j)
a

b] . (1.35)

The state P+
i |∆,s〉 sits in the V1⊗Vs representation of SO(d), where V1 is the vector representation.

The trick is to write
(Σi j)

a
b =

1
2
(Lkl)i j (Σkl)

a
b, (1.36)

6Notice here the minus sign, since the generators Mi j are anti-Hermitian, differing from the usual Hermitian gener-
ators Ji j by a factor of i.
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where (Lkl)i j = δ k
i δ l

j − δ k
j δ l

i is the spin generator in V1. Then, regarding Lkl and Σkl as operators
acting on V1⊗Vs, (1.36) becomes

Lkl
Σkl =

1
2

(
(L+Σ)2−L2−Σ

2
)

(1.37)

=−〈C2 (so(d))〉
∣∣
V1⊗Vs

+ 〈C2 (so(d))〉
∣∣
V1
+ 〈C2 (so(d))〉

∣∣
Vs
. (1.38)

We see that the maximum Eigenvalue of L ·Σ is dictated by the minimal quadratic so(d) Casimir
in V1⊗Vs. By decomposing7

1 ⊗ 1 · · · s

= 1 · · · s−1 ⊕ 1 · · · s+1 ⊕ 1 · · · s ,

we see that this is given by Vs−1. We therefore obtain the bound

∆≥ 1
2

(
−〈C2 (so(d))〉

∣∣
Vs−1

+ 〈C2 (so(d))〉
∣∣
V1
+ 〈C2 (so(d))〉

∣∣
Vs

)
= s+d−2. (1.40)

While below this bound some states have negative norm, when it is saturated (∆ = s+d−2) null
states emerge, which are orthogonal to all states in the Hilbert space. Such states hence form an
invariant sub-module which should be quotiented out, corresponding to the emergence of a gauge
symmetry. Indeed, one may verify the Fierz system (1.32) for ∆ = s+d−2:(

R2∇2− (s+d−2)(s−2)+ s
)

ϕµ1...µs = 0, (1.41a)

∇µ1ϕµ1...µs = 0, (1.41b)

gµ1µ2ϕµ1...µs = 0, (1.41c)

is invariant under the gauge transformation

δξ ϕµ1...µs = ∇( µ1ξµ2...µs ), (1.42)

where the symmetric and traceless gauge parameter ξ is on-shell:(
R2

∇
2− (s−1)(s+d−3)

)
ξµ1...µs−1 = 0, (1.43)

∇
µ1ξµ1...µs−1 = 0, (1.44)

gµ1µ2ξµ1...µs−1 = 0. (1.45)

In contrast to our intuition from flat space, we see that gauge fields in AdS have a mass owing to
the background curvature.

7Note that this decomposition holds only for s > 0. For s = 0 we have V1⊗Vs=0 =V1, leading to a modified bound,
∆≥ d

2 −1 or ∆ = 0, for s = 0. This gives the Breitenlohner-Freedman bound [40]

m2
0 >−

(
d

2R

)2
, (1.39)

which tells us that fields are still stable in AdS even if they are a little bit tachyonic.

7
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Exercise 1.2: Generating Functions

For manipulations of higher-rank tensors, it is useful to employ an operator notation. Fields are
represented by generating functions, which for totally symmetric spin-s representations read

ϕµ1...µs (x) −→ ϕs (x,u) =
1
s!

ϕµ1...µs (x)uµ1 ...uµs , (1.46)

where we have introduced the constant (d + 1)-dimensional auxiliary vector uµ . The action
of the covariant derivative also gets modified when acting on fields expressed as generating
functions (1.46), owing to the viel-bein dependence

∇µ → ∇µ +ω
ab
µ ua

∂

∂ub ,
[
∇µ ,∇ν

]
= Λ(uµ∂uν

−uν∂uµ
)+RΛ

µνρσ (x)u
ρ

∂uσ
. (1.47)

ωab
µ is the spin-connection and viel-bein ea

µ (x), with ua = ea
µ (x)uµ . As a consequence of the

vielbein postulate, we have

[∇µ ,uν ] = 0, [∂uµ ,∇ν ] = 0. (1.48)

RΛ
µνρσ is the Riemann tensor minus its constant trace part:

RΛ
µνρσ = Rµνρσ −Λ(gµρgνσ −gνρgµσ ). (1.49)

In this framework, tensor operations are translated into an operator calculus, which simplifies
manipulations significantly. The operations: box, divergence, symmetrised gradient, diver-
gence, trace, symmetrised metric, and spin can be represented by the following operators:

box: (∇ ·∂u)(∇ ·u), divergence: ∇ ·∂u, sym. metric: u2,

sym. gradient: u ·∇, trace: ∂
2
u , spin: u ·∂u. (1.50)

As an exercise, reformulate the Fierz-system (1.32) in the language of generating functions.
The linearised gauge transformation (1.42) takes the form

δξ ϕ (x,u) = u ·∇ξs−1 (x,u) , ξs−1 (x,u) =
1

(s−1)!
ξµ1...µs−1uµ1 ...uµs−1 . (1.51)

Using the commutators

[�,u ·∇] =Λ
[
u ·∇(2u ·∂u +d−1)−2u2

∇ ·∂u
]

(1.52a)

+2RΛ
µνρσ ∇

µuνuρ
∂uσ
− (∇σ RΛ

νρ −∇ρRΛ
νσ )u

νuρ
∂uσ +RΛ

νρuν
∇

ρ ,

[∇ ·∂u,u ·∇] =�+Λ
[
u ·∂u(u ·∂u +d−2)−u2

∂
2
u
]
+RΛ

µνρσ uνuρ
∂uµ

∂uσ
+RΛ

µνuµ
∂uν

,

(1.52b)

show that invariance of (1.32b) under (1.51) implies (1.43). Show that invariance of (1.33)
fixes the mass of a spin-s gauge field in AdS to be (msR)

2 = (s−2)(s+d−2)− s.

Hint: For AdS backgrounds RΛ
µνρσ =Cµνρσ = 0.

8
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1.4 Lagrangian Formulation

As a starting point in the quest for constructing interactions in a possible non-linear higher-
spin action, we introduce the Lagrangian formulation of the free equations of motion (1.41) for
a bosonic spin-s gauge field on AdSd+1. This description was obtained by Fronsdal in 1978 [6]
(and together with Fang for half integer spin [7]). We do not delve far into the free Fronsdal
formulation,8 only briefly reviewing here the pertinent details.

The first step is to take the Fierz system ((1.41) and (1.43)) off-shell, while keeping the correct
number of physical degrees of freedom to describe a D (s+d−2,s) module. Towards deriving the
complete on-shell system from a single equation, one deforms the Klein-Gordon equation (1.41a)
with divergence and trace terms[

�−m2
s +α1 (u,∇)(∇ ·∂u)+α2 (u,∇)(∂u ·∂u)

]
ϕs (x,u) = 0, (1.53)

to account for the divergence (1.41b) and trace (1.41c) conditions. The guiding principle to deter-
mine the differential operators αi (u,∇) is gauge invariance: Demanding that the deformations are
at most two-derivative fixes

α1 (u,∇) =−(u ·∇)(∇ ·∂u) , (1.54)

α2 (u,∇) =−u2 +
1
2
(u ·∇)2 , (1.55)

but with the additional proviso that the gauge parameter is traceless,

δξ ϕs (x,u) = u ·∇ξs−1 (x,u) , (∂u ·∂u)ξs−1 (x,u) = 0. (1.56)

This also leads to a constraint on the field ϕs: Its double-trace is invariant under the gauge transfor-
mation (1.56) and so by unitarity must be set to zero, (∂u ·∂u)

2
ϕs (x,u) = 0.

One may verify that the Fronsdal formulation carries the correct number of physical degrees
of freedom to describe a spin-s gauge field, reducing to the Fierz system upon gauge fixing – see
e.g. [43] for details.

The algebraic trace constraints in the Fronsdal formulation

(∂u ·∂u)
2

ϕs (x,u) = 0, (∂u ·∂u)ξs−1 (x,u) = 0, (1.57)

may seem unappealing, but they non-the-less achieve the goal of removing the derivative con-
straints, taking the Fierz system (1.41) off-shell. Forgoing the constraints (1.57) simply shifts the
unconventional features elsewhere, such as: into additional auxiliary fields [44–46] and introducing
non-localities [47, 48]. In these lectures we stick with the Fronsdal formulation.

The equation of motion (1.53) can be written in the form

Fs(x,u,∇,∂u)ϕs (x,u) = 0, (1.58)

where Fs is the so-called Fronsdal operator

Fs(x,u,∇,∂u) =�−m2
s −u2(∂u ·∂u)− (u ·∇)

(
(∇ ·∂u)−

1
2
(u ·∇)(∂u ·∂u)

)
. (1.59)

8See, for instance, the reviews [41–43].
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This can be derived from the free action

S(2)AdS [ϕs] =
s!
2

∫
AdSd+1

ϕs (x;∂u)Gs (x;u) , (1.60)

where Gs generalises to spin-s gauge fields the linearised Einstein tensor

Gs (x;u) =
(

1− 1
4

u2
∂u ·∂u

)
Fs (x;u,∇,∂u)ϕs (x,u) . (1.61)

Note that, crucially, the double-traceless condition on ϕs ensures that the Bianchi identity is satis-
fied

(∂u ·∇)Gs (x,u) = 0. (1.62)

With the free action of a totally symmetric spin-s gauge field on AdSd+1, naturally the next
step is to ask if we can construct interactions. Like for the determination of the kinetic term (1.60),
this search is underpinned by the requirement of gauge invariance, and has been subject to decades
of intense efforts. So far this approach has led to results for all possible cubic interactions [49–69]
that may appear in a non-linear higher-spin action.

In the following section we introduce a recent alternative approach that emerged to studying
higher-spin interactions, which employs the AdS/CFT correspondence. As we shall see, holog-
raphy seems to naturally imply the existence of interacting higher-spin theories on an AdS back-
ground, and has the potential to push further the successes of more conventional methods men-
tioned in the previous paragraph.

2. The AdS/CFT Correspondence and Higher Spins

In its most general form, the AdS / CFT correspondence [25–27] is a conjectured duality which
can be elegantly formulated as a simple equation:

AdSd+1 QG ?
= CFTd . (2.1)

In words: Quantum Gravity9 in asymptotically anti-de Sitter spacetime AdSd+1 is postulated
to be equal to a non-gravitational conformal field theory (CFT). This is known as a holographic
duality, since the CFT lives in (at least) one lower dimension. Since the boundary of asymptotically
AdS spaces are conformally flat, we can regard the CFTd as living on the ‘conformal boundary’ of
the dual theory in AdSd+1. This is often depicted as in fig. 2.

In these lectures we are interested in a particular limit of the statement (2.1), in which higher-
spin gauge fields are present in AdSd+1. We thus won’t delve into the details of this remarkable
duality here,10 covering only the salient concepts.

The equivalence (2.1) is striking as, if true, it opens up the possibility to study gravity theories
from the perspective of their CFT duals, and vice versa. Typically the dimensionless coupling λ

9To be a bit more cautious we could say: Any theory that we know how to define in the UV and behaves as ordinary
gravity plus QFT in the infrared.

10Reviews of this vast topic include: [70–74].
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Figure 2: For a given dual pair (2.1), we can place the CFTd on the boundary (solid black boundary of
disc) asymptotically AdS boundary of the dual gravity theory (entire disc). The grey curves are geodesics.
This perspective can be obtained by taking Euclidean AdS, adding a point at infinity to the Rd boundary and
compactifying it to Sd .

of the CFTd is related to the scale
√

α ′ at which our gravity theory is sensitive to higher-derivative
corrections via

λ ∼
(

R2

α ′

)d/2

. (2.2)

In a string theory context we have α ′ = l2
s , the square of the string length. From the relationship

(2.2) we see that the holographic duality (2.1) is strong-weak in nature, with two interesting limits:

1. The point-particle limit: α ′/R2→ 0, where the CFT coupling grows large λ >> 1.

2. The high energy limit: α ′/R2→ ∞ , in which λ → 0.

Although 1. has been subject to intense study to mine the possibilities of investigating strongly
coupled systems via relatively well understood General Relativity,11 2. underpins the topic of these
lectures.

Why should the limit α ′/R2→ ∞ be interesting? In this regime it is intuited that an infinite-
dimensional symmetry may emerge, responsible for the good high energy behaviour of a UV-
complete theory of gravity:12 To understand this expectation in more concrete terms, consider one
of the most promising candidates for a complete theory of gravity: String Theory. Taking simply
the open bosonic string in flat space, for the states on the first Regge trajectory, we have

α
′m2

s = s−1, s = 0,1,2,3, ... . (2.3)

In the α ′→ ∞ limit we indeed recover a tower of higher-spin gauge fields in the spectrum, whose
non-trivial interactions would generate an infinite-dimensional, higher-spin symmetry [24]. This
phenomena can also be observed by considering higher-derivative counter-terms added to the
Einstein-Hilbert action [22].

11See [75, 76] for pedagogical introductions.
12A well known example of this phenomenon is given by the Standard model of electro-weak interactions, where the

massive W± and Z bosons arise from the spontaneous breaking of an SU (2)×U (1) symmetry, which emerges at high
energies.
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With a lot of symmetry comes a lot of control. In this regard, uncovering an infinite-dimensional
higher-spin symmetry principle could shed some light on the elusive high-energy behaviour of
gravity. This makes the limit 2. even more profound, since, via holography, this highly symmet-
ric phase of gravity can be probed through very simple, solvable, CFTs. In fact the emergence
of higher-spin symmetry can also be seen from the dual CFT perspective: As we shall illustrate
later, owing to the presence of a tower of conserved currents unbounded in spin in their spectrum,
free CFTs are governed by an infinite-dimensional higher-spin symmetry. For the duality to hold,
the theory in AdS should be governed by the same symmetry, making the existence of a highly
symmetric phase of gravity even more plausible and more tractable to study.

In order to study this regime of holography in more detail, in the following we make the
dictionary between the bulk and boundary theories more precise.

2.1 The GKP/W Formula

In practice it is most convenient to formulate the holographic duality (2.1) in terms of generat-
ing functions, in Euclidean signature. For concreteness, we work in Poincaré co-ordinates (1.13).

Let’s start with the CFT side of the story. The generating function FCFT [ϕ̄] of connected
correlators in a CFT admits a path-integral representation,

exp(−FCFT [ϕ̄]) =
∫

Dφ exp
(
−SCFT [φ ]+

∫
ddy ϕ̄ (y)O (y)

)
. (2.4)

We use φ to collectively denote the fundamental field(s) in the theory, governed by the CFT action
SCFT [φ ]. The operator O is built from the fields φ in a gauge-invariant manner, and is sourced by
ϕ̄ (y). The source is not dynamical, rather a function that is fixed and under our control.

Holography breathes life into the source ϕ̄ of our CFT operators: Regarding the CFTd as living
on the boundary of AdSd+1 (like in fig. 2), the source is promoted to a fully fledged dynamical
field ϕ (y,z) in AdS governed by the bulk action SAdS [ϕ]. The only control we have over ϕ is its
boundary value ϕ̄ (y) at z = 0.

The GKP/W formula [26, 27, 77] puts the above holographic picture on a more concrete foot-
ing. It states that the physical quantity FCFT [ϕ̄] in the CFT coincides with the AdS one ΓAdS [ϕ̄],

FCFT [ϕ̄] = ΓAdS [ϕ̄] , (2.5)

with

exp(−ΓAdS [ϕ̄]) =
∫

ϕ|∂AdS=ϕ̄

Dϕ exp
(
− 1

G
SAdS [ϕ]

)
, (2.6)

the bulk partition function and G the gravitational constant. This identification and the precise
boundary conditions are made more precise in the following section.

The GKP/W formula provides a prescription for computing correlation functions of gauge
invariant operators in the CFT using the dual gravity theory. Connected correlation functions for
instance can be obtained by functionally differentiating ΓAdS [ϕ̄] instead:

〈O1 (y1) ...On (yn)〉conn. = (−1)n δ

δ ϕ̄1 (y1)
...

δ

δ ϕ̄n (yn)
ΓAdS [ϕ̄i]

∣∣∣
ϕ̄i=0

. (2.7)

12
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In this holographic picture each functional derivative fires a ϕi (y,z) particle into AdS.
At first sight the GKP/W formula doesn’t appear to be so useful, since it involves dealing

with the full gravity partition function. However, we may always take the limit in which gravity is
classical. But what does this mean for the CFT? It turns out that quantum corrections in the bulk
are sensitive to the number of degrees of freedom Ndof. in the CFT, with13(

R
`p

)d−1

∼ Ndof.. (2.9)

The classical limit in the bulk thus corresponds to having a large number of degrees of freedom in
the dual CFT, Ndof >> 1. In particular, the weak coupling G << R expansion

ΓAdS [ϕ̄] =
1
G

ΓAdS [ϕ̄]
(0)+ΓAdS [ϕ̄]

(1)+GΓAdS [ϕ̄]
(2)+ ... , (2.10)

which is regulated by the dimensionless coupling

g := R1−dG ∼ 1/Ndof +O
(
1/N2

dof
)
, (2.11)

translates to a large Ndof expansion in the CFT,

FCFT = Ndof F(0)
CFT +F(1)

CFT +
1

Ndof
F(2)

CFT + ... . (2.12)

Given that the expansion (2.10) encodes the one-particle irreducible scattering amplitudes of the
ϕi in AdS, we encounter an elegant diagrammatic holographic interpretation of connected CFT
correlators at large Ndof:

. (2.13)

The bulk diagrams on the right hand side are known as Witten diagrams. They were first computed
in the context of the limit 1. of the duality in [78–99]. More recently Witten diagrams in the context
of the limit 2. where considered in [32–35, 100–106]. One-loop vacuum energies (n = 0 and k = 1
in (2.13)) have been computed in [107–116].

13We can arrive to this by recalling that degrees of freedom in a CFT can be roughly measured by the overall
coefficient CT of the energy momentum tensor two-point function. From the GKP/W formula, we identify

〈T T 〉CFT ∼ CT ∼ Ndof. ↔ 〈gg〉AdS ∼ Rd−1

G
∼

(
R
`p

)d−1
, (2.8)

since, as we shall see explicitly in the following section, the CFT energy momentum tensor is dual to the graviton in
AdS.

13
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The Field-Operator Map

What does it take for a field ϕ in an asymptotically AdS space to source an operator O of
energy ∆ and spin-s in the dual CFT?

1. The CFT operator must be gauge invariant, since the bulk physics is not sensitive to gauge
dependent quantities→ Spectrum of local operators are composed of traces.14

2. The boundary value of ϕ should have the same transformation properties under SO(d,2)
(quantum numbers) as the source to O .

How do we ensure condition 2? As we saw in §1.3, the quantum numbers of SO(d,2) are
energy and spin. By requiring invariance of (2.4) under dilatations, the source ϕ̄ of O has energy
∆̃ = d−∆. We therefore have15

[E, ϕ̄ (y)] =−i(d−∆+ y ·∂ ) ϕ̄ (y) , (2.14)

while on ϕ it acts via a Lie derivative

LE ϕ
µ1...µs (z,y) =−i(z∂z + y ·∂y− s)ϕ

µ1...µs (z,y) . (2.15)

By comparing (2.15) with (2.14), to preserve invariance under conformal transformations as z→ 0
we need, for boundary directions i,

ϕ
i1...is ∼ zd+s−∆ as z→ 0, (2.16)

where the coefficient ϕ of zd+s−∆ gives the source to O .
A special case of the field-operator map occurs when the unitarity bound is saturated (i.e.

when ∆ = s+ d− 2), which is of interest from our perspective of higher-spin holography. Recall
from §1.3 that such representions of SO(d,2) are known as short representations owing to the
appearence of zero norm states in the Fock space, which should be factored out. For the bulk field
ϕ , this multiplet shortening corresponds to the gauge invariance

δξ ϕµ1...µs = ∇(µ1 ξµ2...µs ). (2.17)

In the CFT, this shortening manifests itself in the conservation of the lowest weight (primary)
operator in the conformal multiplet:

∂
i1Oi1...is ≈ 0. (2.18)

Indeed, invariance of under the gauge variations (2.17) corresponds to the conservation of O:

0 = δξ

∫
∂AdS

ddy ϕ̄
i1...isOi1...is

IBP
= −

∫
∂AdS

ddyξ
i2...is∂ i1Oi1...is =⇒ ∂

i1Oi1...is ≈ 0. (2.19)

In summary, the field-operator map tells us that:

14In partciular, in the large Nd.o.f. limit single-trace operators are identified with bulk single-particle states, while
multi-trace operators are identified with multi-particle states in the bulk.

15See, for instance, [117] for a derivation of the action of the dilation generator.
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2.2 Higher Spin Holography

With the dictionary between CFT operators and bulk fields in place, let us explore in more
detail holography in the limit 2. Recall that this is the regime in which the dual CFT becomes free.

For simplicity, consider a very basic example of a free CFT: A free massless N-component
scalar in d-dimensions,

S [φ ] =
1
2

∫
ddy

N

∑
a=1

∂iφ
a
∂

i
φ

a, i = 1, ...,d, (2.20)

with equation of motion
∂

2
φ

a = 0. (2.21)

This is known as the free scalar O(N) vector model. For a free scalar we have ∆ = d
2 − 1, and

throughout we work in Euclidean signature.
In the O(N) singlet sector (as relevant for holography), amongst the single-trace operators we

have the conserved and traceless16 stress-energy tensor

Ti j = ∂iφ
a
∂ jφ

a− 1
2

δi j∂
k
φ

a
∂kφ

a− d−2
4(d−1)

(
∂i∂ j−δi j∂

2)
φ

a
φ

a, (2.22)

where the right-most term is an improvement which is separately conserved, which is added to
make the stress-energy tensor traceless. While it is straightforward to verify conservation using
the equation of motion (2.21), notice that the stress energy tensor has dimension ∆ = d, and thus
saturates the unitarity bound for a spin-2 lowest weight operator.

It is well known that the presence of a conserved and traceless stress-energy tensor is the signal
of conformal invariance. But, free CFTs possess also much larger, higher-spin, symmetry. In this

16As required for a CFT.
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context, a higher-spin symmetry is typically17 an infinite dimensional extension of the conformal
algebra, generated by a tower of conserved charges that are unbounded in spin.18

That higher-spin charges are present in the free scalar O(N) model can be seen explicitly by
considering the generating function

J (y;q) = φ
a (y+ iq)φ

a (y− iq) =
∞

∑
s=0

1
s!

Ji1...is (y)qi1 ...qis , (2.23)

which describes a tower of operators Ji1...is of ranks s = 0,2,4, ... . It is straightforward to verify
that (2.23) is conserved, ∂y ·∂qJ (y;q)≈ 0, which in turn implies19

∂
i1Ji1...is ≈ 0, s = 2,4,6, ... (2.24)

The theory is thus, as a consequence of Noether’s theorem, governed by the higher-spin symmetry
generated by the charges associated to the conserved currents (2.24). Let us note that for s = 0 we
have instead the scalar singlet operator

O = φ
a
φ

a, (2.25)

of dimension ∆ = 2×
(d

2 −1
)
= d−2. Together with the tower of conserved currents (2.24), this

comprises the entire single-trace sector of the theory.
A would-be dual theory in AdS should also be governed by (an appropriately gauged form) of

the same higher-spin symmetry. According to the field-operator map, we expect the single-particle
spectrum on AdSd+1 to consist of a tower of gauge fields ϕs for each even spin s = 2,4,6,8, ...
corresponding to each of the conserved currents (2.24) in the CFT, and a parity even scalar ϕ0 dual
to the scalar single trace operator O = φ aφ a [30, 31].

While the discussion above was just representation theory, let us note that since (as we shall
see explicitly) the correlation functions of operators in the singlet sector are non-trivial, owing to
the GKP/W formula §2.1, we expect non-trivial interactions amongst the higher-spin gauge fields
on AdSd+1. In this regard, the AdS/CFT correspondence appears to make the potential existence
of consistent interacting theories of higher-spin gauge fields quite natural.

Exercise 3.1: Higher Spin Conserved Currents

Extract the explicit form of the spin-s conserved currents from the generating function (2.23)

Ji1...is = is
s

∑
k=0

(−1)k
(

s
k

)
∂( i1 ...∂ik φ

a
∂ik+1 ...∂ is)φ

a. (2.26)

Hint:
φ

a (y+ iq)φ
a (y− iq) = eiq·∂xφ

a (x)e−iq·∂xφ
a (x) . (2.27)

17In certain dimensions higher-spin algebras have finitely many generators, such as d = 2. However here we work
in general d.

18In fact in d ≥ 3, assuming the existence of exactly one stress tensor, the presence of currents with spin s ≥ 3 in a
CFT implies that the theory is free [118–122].

19Since the scalar φ a is real, odd spin operators do not appear in (2.23). See exercise 3.1.

16



P
o
S
(
M
o
d
a
v
e
2
0
1
6
)
0
0
3

Metric-like Methods in HS Holography Charlotte Sleight

Notice that the currents (2.26) are not traceless, but, just like for the stress-energy tensor is
CFT, one can add improvements to make them traceless.

One direct way [123] to obtain the improved current is to consider the generating function
ansatz

Js (y;z) = f (s)(z ·∂y1 ,z ·∂y2)φ
a(y1)φ

a(y2)
∣∣
y1,y2→y , (2.28)

with null auxiliary vectors z2 = 0 enforcing tracelessness. By demanding that Js is annihilated
by the conformal boost

P−Js = 0, (2.29)

as per the definition of a primary (lowest weight) CFT operator, show that[
(d

2 −1+ y∂y)∂y +(d
2 −1+ ȳ∂y)∂ȳ

]
f (s)(y, ȳ) = 0. (2.30)

The solution is given in terms of a Gegenbauer polynomial

f (s) (y, ȳ) = (y+ ȳ)s C( d−2
2 )

s

(
y− ȳ
y+ ȳ

)
. (2.31)

Notice also that (2.26) is zero for odd spins s. Show that by considering instead a complex
scalar,

I (y;q) = φ
a (y+ iq)φ

∗a (y− iq) , (2.32)

as in the U (N) theory, one obtains a tower of conserved currents for each integer spin.

It turns out the spectrum of the conjectured dual bulk theory is precisely that of the so-called
minimal bosonic Vasiliev higher-spin theory in AdSd+1 [124], which was in fact developed (in
AdS4) before the emergence of AdS/CFT [125]. The theory is formulated at the level of the equa-
tions of motion,20 by introducing an infinite-dimensional auxiliary internal space.21 Comparably
little is known about higher-spin interactions without the auxiliary fields and in the ‘metric-like’
formalism,22 which would extend the free Fronsdal action (1.60) to the interacting level. On the
other-hand the GKP/W formula (2.5) seems to provide a possible implicit definition of a non-linear
on-shell action. In these lectures we shall demonstrate how to use the GKP/W formula to extract
metric-like higher-spin interactions on AdSd+1, free from auxiliary fields.

Let us emphasise that above we have considered the simplest instance of higher-spin holog-
raphy, where in the bulk one has just a tower of gauge fields of increasing spin.23 One may even
question whether holography holds in this more general scenario. On the other hand, Vasiliev’s
theory may be considered as a toy-model for studying the first Regge trajectory of string theory
on AdSd+1 in the tensionless limit (which, as we have seen, indeed consists of a tower of higher-

20See [126–128] for proposals for an action, using the machinery of auxiliary fields.
21See [129–131] for reviews of the Vasiliev system.
22It is called ‘metric-like’ because the metric is generalised by the totally symmetric tensor ϕµ1...µs .
23This is in contrast to the stacks of Regge trajectories like in String Theory, which is mirrored in the dual CFT

description with the basic fields being in the adjoint representation, as opposed to the fundamental representation con-
sidered here.
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spin gauge fields). In this scenario, one is free to study the consequences of higher-spin symmetry
without the added complication of coupling higher-spin gauge fields to matter. Recent efforts have
been dedicated, with the guidance of holography, to embed Vasiliev’s higher-spin theory into ten-
sionless string theory [132–144]. The matter fields belonging to subleading Regge trajectories into
multiplets of the higher-spin symmetry generated by the first Regge trajectory.

The set-up considered here is the simplest amongst AdS higher-spin / vector model dualities.
In particular, the spectrum of single-particle states includes only even spin gauge fields. There
exists an extension of this theory to one whose spectrum contains a gauge field for each integer
spin. The conjectured dual CFT description is the free U (N) invariant theory of a complex scalar
field φ a.24 Further instances of higher-spin vector model dualities have been postulated, including:
The so-called type-B theory in AdS4 with a parity odd scalar in the bulk, Chan-Paton factors and
supersymmetry [140, 145–147]. For comprehensive reviews on the higher-spin / vector model
dualities, see: [148, 149].

To move towards our goal of studying higher-spin interactions from a holographic perspective,
in the following sections we introduce some useful tools for dealing with higher-spin fields in the
metric-like formalism.

3. The Ambient Space Formalism

The ambient space formalism is an instrumental tool in handling spinning fields and operators
in the context of AdS/CFT. Dating back to Dirac [39], the basic idea is that fields in AdSd+2, and
respectively dual operators in the CFTd , may be represented by fields in a (d +2)-dimensional flat
ambient space. This makes manifest the mutual bulk and boundary SO(d,2) symmetry. For metric-
like calculations in anti-de Sitter space, an attractive feature of the ambient space formalism is that
expressions intrinsic to the AdS manifold (e.g. involving non-commuting covariant derivatives)
can be expressed in terms of simpler-flat space ones of the ambient space (e.g. commuting partial
derivatives). Owing to these simplifying features, the ambient formalism has enjoyed a wide variety
of applications in AdS, HS and conformal field theory. For a flavour, see for example: [65, 150–
154].

We review the basic features of the ambient approach here, and refer the reader to [65,155,156]
for further details.

3.1 Bulk Fields

Our goal is to formulate totally symmetric spin-s unitary representations of the AdS isometry
in the language of ambient space. A key point to keep in mind is that, in representing a field on AdS
by a tensor living in the higher-dimensional ambient space, one has to make sure that the number
degrees of freedom is kept constant.

In the ambient formalism a given smooth rank-r field tµ1...µr (x) intrinsic to the AdSd+1 man-
ifold is assigned a representative TA1...Ar (X) of the same rank, which lives in the flat (d + 2)-
dimensional ambient space and in the same representation of SO(d,2). Naturally, the pull back of

24See exercise 3.1.
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T onto the AdS must satisfy

i∗ : TA1...Ar (X) 7−→ tµ1...µr (x) =
∂XA1 (x)

∂xµ1
...

∂XAr (x)
∂xµr

TA1...Ar (X (x)) . (3.1)

However, at this level the choice of representative T is not unique. Indeed, the SO(d,2) generators
(1.6) are interior to AdS,

[
JAB, X2 +R2

]
= 0, and are not sensitive to the extension of T away from

the AdS manifold. More explicitly, there are two sources of ambiguity:

1. Addition of tensors with components perpendicular to the AdS manifold, which sit in the
kernel of the pullback (3.1):

X2 =−R2 =⇒ ∂X
∂xµ
·X
∣∣∣∣
X2=−R2

= 0. (3.2)

2. Dependence on the radial direction ρ =
√
−X2.25

A prescription to fix the above ambiguities was provided by Fronsdal [151] in the ‘70s. For ambi-
guities of type 1, we impose that T is tangent to submanifolds of constant ρ:26

XAiTA1...Ai...Ar = 0, i = 1, ...,r. (3.5)

For the radial dependence, a simple (and thus convenient) condition is to impose that on-shell T is
a harmonic function in the ambient space

∂
2
X TA1...Ar = 0. (3.6)

In order for (see exercise 4.1) T to carry the correct representation of SO(d,2), the harmonic
condition (3.6) implies that it is homogeneous

(X ·∂X −µ)TA1...Ar = 0, i.e. TA1...Ar (λX) = λ
−µTA1...Ar (X) , (3.7)

where we may choose either µ = ∆ or µ = d−∆.
The above discussion also extends to the covariant derivative. The ambient representative of

the covariant derivative ∇µ corresponding to the Levi-Civita connection on AdSd+1 is simply given
by

∇A = PB
A

∂

∂XB , (3.8)

and acts via
∇ = P ◦∂ ◦P. (3.9)

The first projection ensures that we are acting tangent to the AdS manifold. For example,

∇BTA1...As = PC
A PC1

A1
...PCr

As

∂

∂XC (PT )C1...Cs
. (3.10)

25In particular, we are free to multiply by ρ/R where ρ is the radial co-ordinate ρ =
√
−X2, or add terms proportional

to X2 +R2.
26This condition can be imposed by hand, applying the projection operator

PB
A = δ

B
A −

XAXB

X2 , (3.3)

which acts on ambient tensors as

(PT )A1...Ar
:= PB1

A1
...PBr

Ar
TB1...Br , XAi (PT )A1...Ai...Ar

= 0. (3.4)
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3.2 Boundary Fields

The above discussion also extends to fields living on the AdS boundary. In the same way,
a rank-s field fi1...is(y) on the AdSd+1 boundary is represented in ambient space by a function
FA1...As(P) living on a P+ = const. slice of the projective null cone §1.2.

If fi1...is is a symmetric spin-s boundary field of energy ∆, its representative FA1...As(P) is also
symmetric and satisfies

η
A1A2FA1...As(P) = 0 (3.11)

FA1...As(λP) = λ
−∆FA1...As(P), λ (y)> 0. (3.12)

Like for the ambient description of bulk fields in the previous section, we impose that FA1...As(P) is
transverse to the light-cone

PA1FA1...As(P) = 0, (3.13)

However in this case, since P2 = 0, there is an extra redundancy

FA1...As(P)→ FA1...As(P)+P(A1 Λ A2...As), (3.14)

PA1ΛA1...As−1 = 0, ΛA1...As−1(λP) = λ
−(∆+1)

ΛA1...As−1(P), η
A1A2ΛA1...As−1 = 0, (3.15)

which, together with (3.13), removes the extra two degrees of freedom per index of FA1...As .
The scaling behaviour (3.12) extends the definition of FA1...As away from the P+ = const. slice,

with the homogeneity degree fixed by the fact that P→ λ (y)P re-scales the metric on P+ = const.
by an overall factor – i.e. it implements a conformal transformation. See §1.2. The tracelessness
condition (3.11) follows from the tracelessness of fi1...is : We have

fi1...ir (y) =
∂PA1 (y)

∂yi1
...

∂PAr (y)
∂yir

FA1...Ar (P(y)) . (3.16)

In taking the trace of fi1...ir (y), on the RHS we implement the contraction

δ
i j ∂PA

∂yi
∂PB

∂y j = η
AB +PAQB +PBQA, where QA = (1,0,−1). (3.17)

This gives vanishing trace of fi1...ir owing to the tracelessness (3.11) and transversality (3.13) of
FA1...Ar .

3.3 Generating Functions

Like for intrinsic tensors (exercise 1.2), it is useful employ an operator formalism and encode
the ambient representatives of high-rank tensors in generating functions.

Bulk fields

For ambient representatives §3.1 of totally symmetric bulk fields, we have

TA1...As (X) −→ T (X ,U) =
1
s!

TA1...As (X)UA1 ...UAs , (3.18)
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with constant (d + 2)-dimensional ambient auxiliary vector UA. For traceless fields, we may re-
place U →W , with W 2 = 0.

Like for the intrinsic case, the covariant derivative (3.8) also gets modified in the generating
function formalism. It takes the form

∇A = PB
A

∂

∂XB −
XB

X2 ΣAB, X ·∇ = 0 (3.19)

where

ΣAB =U[A
∂

∂U B]
=UA

∂

∂UB −UB
∂

∂UA , (3.20)

is the spin operator in the ambient generating function formalism.
In this case we have the operator algebra

[X ·∂U ,∇A] = 0 , [∂U ·∂U ,∇A] = 0 , [∇A,X2] = 0. (3.21)

Exercise 4.1: Homogeneity degree

To demonstrate the power of the operator formalism, let’s derive the homogeneity condition
(3.7) on harmonic (3.6) ambient representatives of totally symmetric fields.

Using that, in this totally symmetric case,

iJAB = X[A ∂
X
B]+U[A ∂

U
B], (3.22)

derive the relation

1
2

JABJAB = (U ·∂U)(U ·∂U +d−2)+(X ·∂X)(d +X ·∂X)−X2
∂

2
X . (3.23)

For a field carrying the module so(d,2) module D (∆,s) represented by the ambient tensor
TA1...As , we have (see §1.3)

1
2

JABJABT (X ,U) = (∆(∆−d)+ s(s+d−2))T (X ,U). (3.24)

Using (3.23), show that

∂
2
X T (X ,U) =⇒ (X ·∂X −µ)T (X ,U) = 0, with µ = ∆ or d−∆. (3.25)

Boundary fields

For representatives §1.2 of traceless and totally symmetric boundary fields, we have

FA1...Ar (P) −→ F (P,Z) =
1
r!

FA1...Ar (P)ZA1 ...ZAr , Z2 = 0. (3.26)

The tangentiality condition (3.13), expressed in the operator formalism as,(
P · ∂

∂Z

)
F (P,Z) = 0, (3.27)

21



P
o
S
(
M
o
d
a
v
e
2
0
1
6
)
0
0
3

Metric-like Methods in HS Holography Charlotte Sleight

can be enforced by demanding F (P,Z +αP) = F (P,Z), for any α . The extra redundancy (3.14) is
carried by the orthogonality condition Z ·P = 0.

The ambient auxiliary vector Z is related to the intrinsic one z (introduced in exercise 3.1) via

ZA = zi ∂PA

∂yi = zi
(

yi, δ
j

i ,−yi

)
=
(
z · y, z j,−z · y

)
. (3.28)

4. Higher Spin Interactions from CFT

Let’s make more precise how we extract interactions in higher-spin gauge theories from CFT.
Assuming the existence of a fully non-linear action principle SHS for a theory of higher-spin gauge
fields, we perform a weak-field expansion around an empty AdS background in powers of the field
fluctuations (which we denote collectively by ϕi)

SHS AdS = GS(2)HS AdS [ϕi]+G3/2S(3)HS AdS [ϕi]+G2S(4)HS AdS [ϕi]+ ... , (4.1)

where S(n)HS AdS is order-n in the field fluctuations about empty AdS. As we saw in §1.4, the kinetic
term of spin-s gauge field ϕs is given by the Fronsdal action

S(2)HS AdS [ϕs] =
s!
2

∫
AdSd+1

ϕs (x;∂u)

(
1− 1

4
u2

∂u ·∂u

)
Fs (x;u,∇,∂u)ϕs (x,u) , (4.2)

where Fs is the Fronsdal operator

Fs(x,u,∇,∂u) =�−m2
s −u2(∂u ·∂u)− (u ·∇)

(
(∇ ·∂u)−

1
2
(u ·∇)(∂u ·∂u)

)
, (4.3)

m2
s R2 = (s+d−2)(s−2)− s.

The question is then the existence of non-trivial interaction terms S(n)HS AdS with n > 2. In the
context of holography, from the GKP/W formula the possibility of consistent interacting theories
of higher-spin gauge fields on an AdS background appears to be quite natural:

We have (2.5)

exp(−Ffree CFT [ϕ̄]) =
∫

ϕ|∂AdS=ϕ̄

Dϕ exp
(
− 1

G
SHS AdS [ϕ]

)
, (4.4)

where Ffree CFT is the generating function of connected correlators in the dual free CFT.27 From the
relation (2.11) between the bulk coupling g and Nd.o.f, at large Nd.o.f we have

exp(−Ffree CFT [ϕ̄]) = exp
(
− 1

G
SHS AdS [ϕ]

)∣∣∣
ϕ|∂AdS=ϕ̄

=
∞

∏
n=2

exp
(
−
√

G
n−2

S(n)HS AdS [ϕ]
)∣∣∣

ϕ|∂AdS=ϕ̄

,

(4.6)

27In fact, for free CFTs the 1/Nd.o.f expansion is exact,

Ffree CFT = Ndof F(0)
free CFT. (4.5)
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That Ffree CFT is non-trivial indicates, via (4.6), non-trivial interactions in the higher-spin gauge
theory on AdSd+1. With the knowledge of Ffree CFT, which is straightforward to determine in a free
CFT, we may use (4.6) to iteratively extract metric-like interactions in the dual higher-spin gauge
theory:

. (4.7)

To this end a systematic approach needs to be developed to compute tree-level Feynman dia-
grams in AdS, known as Witten diagrams, for theories containing an infinite number of higher-spin
gauge fields. This is the focus of the following sections.

4.1 Witten Diagrams in Higher Spin Theories

4.1.1 Warm-up: Scalar Fields in AdS

For simplicity, for the remainder of these notes we set the AdS radius R = 1.
To lay down the basics of evaluating tree-level Witten diagrams using the ambient space for-

malism, let’s begin with the simplest example of a scalar field theory in AdS. In this way we are
free from the extra complexity added when considering fields of higher-spin.

Consider the action

S [ϕi] =
1
G

∫
AdS

1
2

∇µϕi∇
µ

ϕi +m2
i ϕ

2
i +gϕ1ϕ2ϕ3 + ... , i = 1,2,3, (4.8)

with
m2

i = ∆i (∆i−d) . (4.9)

In accordance with the GKP/W formula, at weak coupling the generating function of connected
correlators at large Nd.o.f in the dual CFT is given holographically by the on-shell action, subject to
the boundary conditions

lim
z→0

ϕi (z,y)z∆i−d = ϕ̄i (y) . (4.10)

The first step is to solve the equations of motion,

δS
δϕi

=
(
−�+m2

i
)

ϕi +gϕ jϕk + ...= 0, i 6= j 6= k (4.11)

subject to (4.10). Since we are at weak coupling, this can be solved perturbatively in the boundary
values ϕ̄ using integral kernels. We expand

ϕi (x) = ϕ
(0)
i (x)+ϕ

(1)
i (x)+ϕ

(2)
i (x)+ ..., (4.12)
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where ϕ
(n)
i is the solution at order n+1 in the ϕ̄ . This gives rise to the system of equations(

−�+m2
i
)

ϕ
(0)
i = 0, (4.13)(

−�+m2
i
)

ϕ
(1)
i +gϕ

(0)
j ϕ

(0)
k = 0,(

−�+m2
i
)

ϕ
(2)
i +gϕ

(0)
j ϕ

(1)
k +gϕ

(1)
j ϕ

(0)
k = 0,

... ,

to be solved order-by-order in the ϕ̄ .
The solution of the first, linear, equation(

−�+m2)
ϕ
(0)
i = 0, (4.14)

can be constructed from the boundary data using the corresponding bulk-to-boundary propagator.
This the integral kernel

ϕ
(0)
i (z,y) =

∫
∂AdS

ddy′K∆i (z,y; ȳ) ϕ̄i (ȳ) , (4.15)

where28

(
−�+m2

i
)

K∆i (z,y; ȳ) = 0, lim
z→0

(
z∆i−dK∆i (z,y; ȳ)

)
=

1
2∆i−d

δ
d (y− ȳ) . (4.16)

Higher-order solutions require the bulk-to-bulk propagator

(
−�+m2

i
)

Π∆i

(
x;x′
)
=

1√
|g|

δ
d+1 (x− x′

)
. (4.17)

In this way we obtain the formal solution

ϕ
(0)
i (x) =

∫
∂AdS

ddy′K∆i (z,y; ȳ) ϕ̄i (ȳ) , (4.18)

ϕ
(1)
i (x) =−g

∫
AdS

dd+1x′Π∆i

(
x;x′
)

ϕ
(0)
j

(
x′
)

ϕ
(0)
k

(
x′
)
,

ϕ
(2)
i (x) =−g

∫
AdS

dd+1x′Π∆i

(
x;x′
)

ϕ
(0)
j

(
x′
)

ϕ
(1)
k

(
x′
)
−g

∫
AdS

dd+1x′Π∆i

(
x;x′
)

ϕ
(1)
j

(
x′
)

ϕ
(0)
k

(
x′
)

... .

What remains is to insert the form of the kernels and perform the integration over AdSd+1. The
on-shell action is thus given by the diagrammatic expansion

. (4.19)

28The seemingly out of place factor of 2∆i − d ensures consistency with the boundary limit of the bulk-to-bulk
propagator (4.17).
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Connected correlation functions of the CFT operators Oi dual to the ϕi can be computed at large
Nd.o.f by functionally differentiating (4.19) with respect to boundary values (sources) ϕ̄i.

In these lectures we restrict to the holographic computation of three-point functions at large
Nd.o.f,

.

(4.20)
which are generated by cubic interactions in AdS. To evaluate the corresponding Witten diagrams,
in this case we just require the bulk-to-boundary propagators (4.16). In the Poincaré patch they are
given by [27]

K∆ (z,y; ȳ) =C∆,0

(
z

z2 +(y− y′)2

)∆

, C∆,0 =
Γ(∆)

2πd/2Γ
(
∆+1− d

2

) , (4.21)

where the near-boundary behaviour (4.16) fixes the overall coefficient.

Box 5.1: Fixing the Propagator normalisation

Here we show explicitly how the propagator normalisation (4.21) is fixed by the near-boundary
behaviour (4.16). At the linearised level, we have

ϕ (z,y) =
∫

dd ȳK∆,0 (z,y; ȳ) ϕ̄ (ȳ) . (4.22)

Setting for simplicity y = 0 by translation invariance and going to radial co-ordinates ρ = |ȳ|,
we have ∫

dd ȳK∆,0 (z,0; ȳ) ϕ̄ (ȳ) = z∆
Ωd−1

∫
dρ C∆,0

ρd−1

(z2 +ρ2)∆
ϕ̄ (ρ) (4.23)

= zd−∆
Ωd−1

∫
dt C∆,0

td−1

(1+ t2)∆
ϕ̄ (tz) ,

where Ω = 2πd/2

Γ(d/2) and in the second equality we made the change of variables t = ρ/z. Then,
expanding ϕ̄ (tz) about z = 0,

lim
z→0

ϕ (z,0)z∆−d =C∆,0Ωd−1

∫
dt

td−1

(1+ t2)∆
ϕ̄ (0) + O (z) (4.24)

=C∆,0
πd/2

Γ(d/2)
Γ(d/2)Γ(∆−d/2)

Γ(∆)
.

25



P
o
S
(
M
o
d
a
v
e
2
0
1
6
)
0
0
3

Metric-like Methods in HS Holography Charlotte Sleight

To obtain the boundary behaviour (4.10) we therefore require

C∆,0 =
Γ(∆)

2πd/2Γ
(
∆+1− d

2

) . (4.25)

In the following we demonstrate how to evaluate Witten diagrams (4.20) using ambient space
techniques §3, which admit a straightforward generalisation to the higher-spin case. In the ambient
language, the propagator (4.21) takes the simple form

K∆ (X ;P) =
C∆,0

(−2X ·P)∆
, (4.26)

with bulk and boundary points

X =

(
z2 + y2 +1

2z
,
yi

z
,
1− z2− y2

2z

)
, P =

(
1
2
(
1+ ȳ2) , ȳi,

1
2
(
1− ȳ2)) . (4.27)

At large Nd.o.f., we have

〈O1 (y1)O2 (y2)O3 (y3)〉= g
∫

AdS
dXK∆1 (X ;P1)K∆2 (X ;P2)K∆3 (X ;P3) (4.28)

Evaluating the bulk integral can be dramatically simplified by using the Schwinger-parameterised
form for the propagator [97, 99]29

K∆ (X ;P) =
C∆,0

Γ(∆)

∫
∞

0

dt
t

t∆e2tP·X . (4.30)

In this way we have

g
∫

AdS
dXK∆1 (X ;P1)K∆2 (X ;P2)K∆3 (X ;P3) (4.31)

= g
∫

∞

0

3

∏
i=1

(
C∆i,0

Γ(∆i)

dti
ti

t∆i

)∫
AdS

dXe2(t1P1+t2P2+t3P3)·X

= gπ
d
2 Γ

(
−d +∑

3
i=1 ∆i

2

)∫
∞

0

3

∏
i=1

(
C∆i,0

Γ(∆i)

dti
ti

t∆i
i

)
e(−t1t2P12−t1t3P13−t2t3P23),

where we used box 5.2 to evaluate the bulk integral and defined Pi j =−2Pi ·Pj. Through the change
of variables,

t1 =
√

m2m3

m1
, t2 =

√
m1m3

m2
, t3 =

√
m1m2

m3
, (4.32)

we obtain the final result

29 This is straightforward to obtain using the integral form of the Gamma function

Γ(t)α
−t =

∫
∞

0

du
u

ute−αu. (4.29)
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〈O1 (y1)O2 (y2)O3 (y3)〉 (4.33)

=
1
2

gπ
d
2 Γ

(
−d +∑

3
i=1 ∆i

2

)∫
∞

0

3

∏
i=1

(
C∆i,0

Γ(∆i)

dmi

mi
m

∆i
2

i

)
exp
(
−miPjk

)
= gC(∆1,∆2,∆3;0)

1

P
∆1+∆3−∆2

2
13 P

∆2+∆3−∆1
2

23 P
∆1+∆2−∆3

2
12

.

where we introduced

C(∆1,∆2,∆3;0) (4.34)

=
1
2

π
d
2 Γ

(
−d +∑

3
i=1 ∆i

2

)
C∆1,0C∆2,0C∆3,0

Γ

(
∆1+∆2−∆3

2

)
Γ

(
∆1+∆3−∆2

2

)
Γ

(
∆2+∆3−∆1

2

)
Γ(∆1)Γ(∆2)Γ(∆3)

.

Box 5.2: Tree-level contact diagrams using Schwinger Parameterisation

Consider the n-point contact diagram generated by the vertex involving scalars ϕi

V12...n = gϕ1ϕ2...ϕn, (4.35)

Using the Schwinger-parameterised form of the bulk-to-boundary propagators (4.30) one en-
counters the bulk integral

A cont. (y1, ... ,yn) =

(
n

∏
i=1

C∆i,0

)∫ +∞

0

n

∏
i=1

(
dti
ti

t∆i

)∫
AdS

dX exp

(
2

n

∑
i=1

ti Pi ·X

)
, (4.36)

which is the extension of (4.31) to n > 3. Defining T = ∑
n
i=1 tiPi, by Lorentz invariance we

may simply choose T = |T |(1,0,0). Like this we obtain∫
AdS

dX exp

(
2

n

∑
i=1

ti Pi ·X

)
=
∫ +∞

0

dz
z

z−d
∫

ddye−(1+z2+y2)|T |/z (4.37)

= π
d/2
∫ +∞

0

dz
z

z−d/2 e−(z−T 2/z), (4.38)

where in the second line we evaluated the Gaussian integral over y.30 Returning to the full
(4.36) and rescaling ti → ti/

√
z, we can evalute the final integral over z by using the integral

representation of the Gamma function (see footnote 29.)

π
d/2
∫ +∞

0

n

∏
i=1

(
dti
ti

t∆i

)∫ +∞

0

dz
z

z−d/2 e−(z−T 2/z) (4.39)

= π
d/2
∫ +∞

0

n

∏
i=1

(
dti
ti

t∆i

)
eT 2
∫ +∞

0

dz
z

z
− d

2+
1
2

n
∑

i=1
∆i

e−z

= π
d/2

Γ

(
−d

2
+

1
2

n

∑
i=1

∆i

)∫ +∞

0

n

∏
i=1

(
dti
ti

t∆i

)
e
− ∑

i<k
titkPik

,

where we used T 2 = ∑
i<k

titkPik.
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4.1.2 Witten Diagrams with External HS Fields

With the basics in place, we now turn to the case of external higher-spin fields. One of the
main virtues of the ambient space approach is that it makes the SO(d,2) symmetry manifest. That
the ambient representative fields are homogeneous in both the bulk and boundary co-ordinates
allows us to straightforwardly express a given Witten diagram with spinning external legs as some
differential operator F (Pi,∂Pi) acting on a diagram with only external scalars, as illustrated below
for tree-level three-point Witten diagrams

.

(4.41)
In particular, we can reduce a three-point Witten diagram involving external spinning fields to one
of the type (4.28), as we explain in the following.

Spinning Bulk-to-Boundary Propagators

For a totally symmetric and traceless spin-s field of energy ∆, the corresponding bulk-to-
boundary propagator satisfies the wave equation [157]

(−�+∆(∆−d)− s)K∆,µ1...µs
i1...is

(
z,y;y′

)
= 0, (4.42)

lim
z→0

(
z∆−d+sK∆,µ1...µs

i1...is
(
z,y;y′

))
=

δ
i1 ...
{ µ1 ...

δ
is
µs }

2∆−d
δ

d (y− y′
)

(4.43)

The SO(d,2) symmetry places constraints on the ambient representative

K∆,s (X ,α1W ;λP,α2Z +βP) = λ
−∆ (α1α2)

s K∆,s (X ,W ;P,Z) , (4.44)

which fix its structure uniquely:31

K∆,s (X ,W ;P,Z) = (W ·P ·Z)s C∆,s

(−2X ·P)∆
. (4.46)

30In particular, ∫
ddye−y2|T |/z =

(
z
|T |

)d/2
π

d/2. (4.40)

31Since tracelessness in the bulk indices in this case is ensured by

P2 = 0, Z2 = 0, Z ·P = 0, (4.45)

we may replace W →U , with U2 6= 0.
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The projector

PA
B = δ

A
B −

PAXB

P ·X
, (4.47)

ensures transversality of the propagator at both its bulk and boundary points, while the overall
coefficient C∆,s is fixed by equation (4.43)

C∆,s =
(s+∆−1)Γ(∆)

2πd/2 (∆−1)Γ
(
∆+1− d

2

) . (4.48)

The latter also fixes the normalisation of the two-point function on the boundary

〈O∆,s (P1)O∆,s (P2)〉 = K∆,s (P1;P2) (4.49)

.

Spinning Witten diagrams from Scalar Witten diagrams

The trick is that we can express spinning propagators and their derivatives in the form

(U2 ·∂X)
n K∆,s (X ,U1;P,Z) = G (P,∂P;Z,U1,U2)K∆+n,0 (X ;P) , (4.50)

for some function G acting on a scalar bulk-to-boundary propagator, which we now determine. It
is sufficient to consider the n = 0 and s = 0 cases:

For n = 0 it is straightforward to confirm that

K∆,s (X ,U ;P,Z) =
1

(∆−1)s
(DP (Z;U))s K∆,0 (X ;P) , (4.51)

with

DP (Z;U) = (Z ·U)

(
Z · ∂

∂Z
−P · ∂

∂P

)
+(P ·U)

(
Z · ∂

∂Z

)
, (4.52)

implementing the projection (4.47).
For s = 0 we have

(U ·∂X)
n K∆,0 (X ;P) = 2n (∆)n (U ·P)

n K∆+n,0 (X ;P) , (4.53)

which together with (4.51) fixes (4.50).
With the form (4.50) of bulk-to-boundary propagators and their derivatives, any Witten dia-

gram with spinning external fields may be expressed in terms of one with only external scalars,
with no derivatives acting upon them. For tree-level three-point Witten diagrams, this in particular
means that we can recycle the result (4.33) we previously derived for the three-point Witten dia-
gram generated by the basic cubic vertex (4.8) for scalar fields. This is illustrated for a three-point
Witten diagram involving a single external field of arbitrary spin in the following.
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Example: Three-point Witten Diagrams with Single HS Field

We now demonstrate the approach described in the previous section for the simplest example
of the tree-level three-point Witten diagram generated by a cubic interaction between two scalars
φ1 & φ2 of energies ∆1,2 and a totally symmetric spin-s field ϕs of energy ∆s. This type of vertex is
unique on-shell32 up to an overall coupling [158], and takes the form33

V̂0,0,s = gϕµ1...µs φ1∇
µ1 ...∇µsφ2 = s!gφ1(x)(∂u ·∇)s

φ2(x)ϕs (x,u) , (4.54)

for some coupling g. In the second equality we expressed the vertex in the operator formalism
(exercise 1.2).

Figure 3:

To apply the methods of the previous section to evaluate the corresponding tree-level Witten
diagram, we have first to re-write the vertex (4.54) in ambient space. Following the dictionary in
§3, this is simply

V̂0,0,s(X) = gϕA1...As φ1∇
A1 ...∇Asφ2 = s!gφ1(X)(∂U ·∇)s

φ2(X)ϕs (X ,U) , (4.55)

where we recall the homogeneity and tangentiality conditions §3.1 on ambient representatives.
In fact in ambient space the vertex (4.55) can be simplified further: Terms which deform the

ambient representative (3.19) of the covariant derivative from the (d + 2)-dimensional flat partial
derivative ∂ A

X drop out, owing to the tracelessness and tangentiality of ϕs(X ,U),

∂U ·∂U ϕs(X ,U) = 0, X ·∂U ϕs(X ,U) = 0. (4.56)

We therefore arrive to the very simple expression

V̂s,0,0(X) = s!gφ1(X)(∂U ·∂X)
s
φ2(X)ϕs (X ,U) , (4.57)

whose tree-level three-point Witten diagram we now evaluate following the approach outlined in
the previous section. According to the standard Feyman rules §4.1.1, this is

32I.e. unique when enforcing the constraints (1.32) of the Fierz system, including the tracelessness and divergenceless
constraints.

33This can also be understood from the perspective of a dual CFT, since there is only a single conformally covariant
tensor structure that can be written down for a correlation function containing two scalar operators and a spin-s operator.
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〈O∆1,0(P1)O∆2,0(P2)O∆3,s(P3;Z)〉 (4.58)

= s!g
∫

AdS
K∆3,s (X ,∂U ;P3,Z)K∆1,0 (X ;P1)(U ·∂X)

s K∆2,0 (X ;P2) ,

where the dual CFT operators O∆1 , O∆2,0 and O∆s,s are sourced by φ1, φ2 and ϕs, respectively.
The core idea of §4.1.2 was to generate such a Witten diagram with spinning external legs from

the basic diagram (4.33) with only external scalars through the action of an appropriate differential
operator in the boundary variables (equation (4.41)). With the simple form of the vertex (4.57),
this is straightforward to attain using the expressions (4.51) and (4.53) for the bulk-to-boundary
propagators. We get,

〈O∆1,0(P1)O∆2,0(P2)O∆3,s(P3;Z)〉 (4.59)

=
s!g

(∆3−1)s
(DP3 (Z;∂U))

s
∫

AdS
K∆3,0 (X ;P3,Z)K∆1,0 (X ;P1)(U ·∂X)

s K∆2,0 (X ;P2)

=
s!
(
∆2 +1− d

2

)
s

(∆3−1)s
(DP3 (Z;P2))

s g
∫

AdS
K∆3,0 (X ;P3,Z)K∆1,0 (X ;P1)K∆2+s,0 (X ;P2) .

This relationship is depicted in figure 3.
All that remains is to plug in the result (4.33) for the basic scalar three-point Witten diagram

and evaluate the action of the differential operator DP, to arrive to the final expression34

〈O∆1,0(P1)O∆2,0(P2)O∆3,s(P3;Z)〉 (4.61)

= gC(∆1,∆2,∆3;s)
((Z ·P1)P23− (Z ·P2)P13)

s

P
∆1+∆3−∆2+s

2
13 P

∆2+∆3−∆1+s
2

23 P
∆1+∆2−∆3+s

2
12

,

with

C(∆1,∆2,∆3;s) (4.62)

=
2s
(
1− d

2 +∆2
)

s
(∆3−1)s

(
∆1 +∆3−∆2− s

2

)
s
C(∆1,∆2 + s,∆3;0)

=C∆1,0C∆2,0C∆3,s

2sπ
d
2 Γ

(
∆1+∆2+∆3−d+s

2

)
Γ

(
∆1+∆2−∆3+s

2

)
Γ

(
∆1+∆3−∆2+s

2

)
Γ

(
∆2+∆3−∆1+s

2

)
2Γ(∆1)Γ(∆2)Γ(∆3 + s)

.

The result (4.61) has precisely the space-time dependence that is required by conformal symmetry
(see §4.3.1). It can be expressed in more familiar intrinsic terms using that

Pi j = (yi− y j)
2 , ZA =

(
z · y3, z j,−z · y3

)
, Z ·P1 = z · y13, Z ·P2 = z · y23, (4.63)

34The action of DP is given by

(DP3 (Z|P2))
s 1

P
∆1+∆3−∆2−s

2
13 P

∆2+∆3−∆1+s
2

23 P
∆1+∆2−∆3+s

2
12

(4.60)

=

(
∆1 +∆3−∆2− s

2

)
s

((Z ·P1)P23− (Z ·P2)P13)
s

P
∆1+∆3−∆2+s

2
13 P

∆2+∆3−∆1+s
2

23 P
∆1+∆2−∆3+s

2
12

.
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to obtain

〈O∆1,0(y1)O∆2,0(y2)O∆3,s(y3;z)〉

= gC(∆1,∆2,∆3;s)

(
(z · y13)y2

23− (z · y23)y2
13
)s(

y2
13

) ∆1+∆3−∆2+s
2

(
y2

23

) ∆2+∆3−∆1+s
2

(
y2

12

) ∆1+∆2−∆3+s
2

. (4.64)

This approach is straightforward to apply to the general case of external fields with arbitrary
integer spin [34]. On the other hand the result (4.64) is already enough to fix all higher-spin cubic
interactions involving a single field of arbitrary integer spin, which we now consider.

4.2 Holographic Reconstruction of HS Cubic Vertices

Now that we know how to compute three-point Witten diagrams with an external field of
arbitrary integer spin, we can already holographically re-construct part of the cubic order action of
the minimal bosonic higher-spin theory on AdSd+1, which was introduced in §2.2.

For this set-up, the GKP/W formula §2.1 reads:3536

Ffree O(N) [ϕ̄s]
N>>1
=

1
G

SHS AdS [ϕs|∂AdS = ϕ̄s] (4.65)

=
∫

AdSd+1
∑

s∈2Z

s!
2

ϕs (x,∂u)
(
�−m2

s
)

ϕs (x,u)+ ∑
s3≤s2≤s1

Vs1,s2,s3 (ϕsi)+ ...

where Ffree O(N) is the generating function of connected correlators in the d-dimensional free scalar
O(N) model and SHS AdS is a would be non-linear action for the dual minimal bosonic higher-spin
theory, expanded around AdSd+1. Note that the action is on-shell, hence the dropping of gauge-
dependent terms in the kinetic term from the off-shell Fronsdal action (4.2).

In particular, the formula (4.65) implies that cubic interactions between gauge fields of a given
triplet of spins s1-s2-s3 are fixed by the three-point function of conserved currents (2.28) of the
same triplet of spins,

〈Js1 (y1)Js2 (y2)Js3 (y3)〉
N>>1
=

δ

δ ϕ̄s3 (y3)

δ

δ ϕ̄s2 (y2)

δ

δ ϕ̄s1 (y1)

∫
AdSd+1

Vs1,s2,s3 (ϕsi)

. (4.66)

35In the present case of vector models, Nd.o.f. = N.
36Recall that for spin-s gauge fields we have m2

s R2 = (s−2)(s+d−2)− s.
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In practice one can proceed by making the most general ansatz for the vertex Vs1,s2,s3 and solving
(4.66) for its form [34]. This approach is particularly successful because the CFT is free, and so
the correlation functions are straightforwardly computed by Wick contracting.

For the V0,0,s vertices, as discussed in §4.1.2, the ansatz one can write down is unique up to an
overall coefficient. We can therefore use the result of the previous section to determine the cubic
interactions involving a single gauge field of arbitrary spin, which we undertake in the following.

4.3 Example: Cubic order action for 0-0-s interactions

The simple illustrative example of this approach, which employs the results derived in §4.1.2,
is to extract the on-shell cubic interactions between two scalars ϕ0 and a spin-s gauge field ϕs in
the bulk action.

For consistency with the spin-s gauge transformations, the V0,0,s vertices have the form

V0,0,s = g0,0,ss!Js (x,∂u)ϕs (x,u) , (∂u ·∇)Js (x,u) ≈ 0, (4.67)

where Js is a spin-s conserved current bi-linear in ϕ0. Its explicit form is most straightforward to
work out in ambient space, as we demonstrate in exercise 5.1 below.

Exercise 5.1: AdS Conserved Currents from Flat Space

Recall that we already encountered some spin-s conserved currents that are scalar bi-linears
in §2.2, but in flat space. In fact using the ambient space formalism, we can use this result to
construct the analogous currents in AdS:

Suppose that we have a symmetric rank-s tensor Is in ambient space, that is conserved
with respect to the ambient partial derivative

(∂U ·∂X) Is(X ,U) ≈ 0. (4.68)

Can Is also define a conserved current in AdS? Using ambient representative (3.19) for the
covariant derivative on AdS, show that

(∂U ·∇) Is (X ,U) = (∂U ·∂X) Is (X ,U)+
U ·X

X2 ∂
2
U Is (X ,U)

− X ·∂U

X2 [X ·∂X +U ·∂U +d] Is (X ,U) (4.69)

The first term vanishes due to conservation (4.68), while the final term sits in the kernel of the
pull-back (3.1) onto the AdS manifold and can thus be neglected. Therefore Is also represents
a conserved current in AdS if

[X ·∂X +U ·∂U +d] Is (X ,U) = 0. (4.70)

This condition is precisely satisfied by the flat space current (2.26) that we encountered in
exercise 3.1, but with φ a→ ϕ0:

Is (X ,U) = is
s

∑
k=0

(−1)k
(

s
k

)
(U ·∂X)

k
ϕ0 (X)(U ·∂X)

s−k
ϕ0 (X) , (4.71)
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Where the ambient representative of the bulk scalar ϕ0 satisfies ((3.6) and (3.7))

∂
2
X ϕ0 (X) = 0 (4.72)

(X ·∂X −2+d)ϕ0 (x) = 0. (4.73)

Taking the expression (4.71) for the conserved current, the vertex (4.67) in ambient space reads

V0,0,s = g0,0,ss!is ϕs (X ,∂U)
s

∑
k=0

(−1)k
(

s
k

)
(U ·∂ )k

ϕ0 (X)(U ·∂ )s−k
ϕ0 (X) . (4.74)

On the other hand, recall in §4.1.2 we argued that the structure of vertices involving two scalars
and a spin-s field is unique on-shell. In other words, it must be that

V0,0,s ≈ αV̂0,0,s, (4.75)

for some constant α and V̂0,0,s is the basic vertex (4.54). Indeed, integrating by parts and using the
on-shell (Fierz-Pauli) conditions (1.32) one finds

V0,0,s ≈ 2sV̂0,0,s = g0,0,ss!2sis ϕs (X ,∂U)(U ·∂ )s
ϕ0 (X) . (4.76)

Re-cycling the result (4.64) for the Witten diagram generated by the basic vertex V̂0,0,s, from the
bulk side we have

〈O (y1)O (y2)Js (y3;z)〉 (4.77)

N>>1
= 2sg0,0,sC(d−2,d−2,s+d−2;s)

(
(z · y13)y2

23− (z · y23)y2
13
)s(

y2
13

) d
2−1+s (y2

23

) d
2−1+s (y2

12

) d
2−1

.

What remains is to compare (4.77) with the result as computed in CFT, to which we now turn.

4.3.1 Correlators in CFT

In a CFT,37 the conformal symmetry fixes the structure of the three-point function up to a
collection of coefficients [161]. For the present case of three-point functions involving a single
operator of non-zero spin, there is a unique structure compatible with conformal symmetry

〈O (y1)O (y2)Js (y3;z)〉 = COOJs

(
(z · y13)y2

23− (z · y23)y2
13
)s(

y2
13

) d
2−1+s (y2

23

) d
2−1+s (y2

12

) d
2−1

. (4.78)

For free theories, COOJs is straightforward to compute by Wick contracting. To this end, it is
convenient to employ the generating function representation (2.28) for the spin-s currents, yielding
for the free scalar O(N) model (see exercise 5.2)

CJsOO = 8N
[

1+(−1)s

2

]
2s
(d

2 −1
)

s (d−3)s

Γ(s+1)
. (4.79)

37We only discuss the CFT side briefly here. For reviews / lecture notes on Conformal Field Theory see [117, 159,
160].
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Exercise 5.2 Three-point function coefficient

Using the generating function representation (2.28) for the spin-s currents, show that

〈O (y1)O (y2)Js (y3;z)〉 (4.80)

=
8N

Γ
(d

2 −1
)3

[
1+(−1)s

2

]
(z ·∂y + z ·∂ȳ)

sC( d−3
2 )

s

(
z ·∂y− z ·∂ȳ

z ·∂y + z ·∂ȳ

)

×
∫

∞

0

(
3

∏
i=1

dti
ti

t
d
2−1

i

)
e−t1 (y−x1)

2−t2 (ȳ−x2)
2−t3 (x1−x2)

2∣∣
y,ȳ→y3

.

Hint: Express the two-point function of the fundamental scalar in Schwinger-parameterised
form

〈φ a (y1)φ
b (y2)〉=

δ ab

Γ
(d

2 −1
) ∫ ∞

0

dt
t

t
d
2−1e−t y2

12 . (4.81)

By extracting the coefficient of (y13 · z)s in (4.80), confirm the expression (4.79) for the overall
coefficient of the three-point function.

Likewise, two-point functions are also fixed up to an overall coefficient by conformal symme-
try

〈Js (y1;z1)Js (y2;z2)〉=
CJs(

y2
12

)s+d−2

(
z1 · z2 +

2z1 · y12 z2 · y21

y2
12

)s

. (4.82)

A similar exercise in Wick contractions yields,

CJs = 2s+1N
[

1+(−1)s

2

] (d−3)s(d−3)2s

Γ(s+1)
. (4.83)

4.3.2 Holographic reconstruction

Before we proceed to extract the cubic couplings g0,0,s holographically, let us emphasise that
the GKP/W formula (2.5) is only meaningful if the two-point function normalisations in both the
bulk and boundary are consistent. In the following we employ the unit normalisation38

〈Js (y1;z1)Js (y2;z2)〉=
1(

y2
12

)s+d−2

(
z1 · z2 +

2z1 · y12 z2 · y21

y2
12

)s

. (4.84)

To extract the cubic coupling we compare the bulk (4.77) and boundary (4.78) results with normal-
isation (4.84), to obtain [33]39

38On the bulk side this entails sending Js→ 1√
Cs+d−2,s

Js, while in the CFT we send Js→ 1√
CJs

Js.
39See also [36] for the earlier s = 0 case on AdS4. The vertex in this case is in fact vanishing, which can be seen

by inserting d = 3 and s = 0 in (4.85). To reconcile this result with the non-zero dual CFT correlator 〈OOO〉, in this
case one may add a boundary term to the bulk action which generates the CFT result. This was carried out [162] for the
duality with four-dimensional N = 8 gauged supergravity [163] in the bulk, which has no A3 cubic couplings but the
dual CFT correlators are non-vanishing.
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g0,0,s =
2

3d−s−1
2 π

d−3
4 Γ

(d−1
2

)√
Γ
(
s+ d

2 −
1
2

)
√

N
√

s!Γ(d + s−3)
. (4.85)

Holography therefore indicates that the sector of a would-be cubic order action on AdSd+1 involv-
ing interactions of the gauge fields with two scalars (on-shell) takes the form

1
G

SHS AdS [ϕs] (4.86)

= ∑
s∈2Z

∫
AdSd+1

1
2

ϕ
µ1...µs (x)

(
�−m2

s
)

ϕµ1...µs (x)+g0,0,s 2s
ϕµ1...µsϕ0 (x)∇

µ1 ...∇µsϕ0 (x)+ ... ,

with m2
s = (s−2)(s+d−2).

A few concluding comments:

• In obtaining the result (4.86), we did not employ any notion of higher-spin gauge symme-
try – under which the theory should still be invariant at the interacting level. An important
non-trivial check of the result40 was the demonstration that it would coincide with the vertex
obtained purely from requiring higher-spin gauge invariance at the interacting level [164],
i.e. the Noether procedure. This also served as a test of higher-spin holography itself, gen-
eralising the existing tree-level three-point function tests in AdS4 [101] and AdS3 [103,104]
to generic dimensions.

• At the same time, the holographic approach to constructing higher-spin interactions appears
to be more efficient than the Noether procedure. Indeed, invariance under linearised higher-
spin gauge transformations (1.42) is insufficient to fix the relative couplings (4.85), requiring
the consideration of higher-order consistency conditions. See e.g. [49, 61, 119, 165]. The
holographic approach requires only knowledge of three-point free CFT correlators.

• The methods and results presented here can be straightforwardly carried over to other in-
stances of higher-spin holography. So far, the 0-0-s cubic couplings have also been holo-
graphically reconstructed for the higher-spin theory dual to the free fermion vector model
[38]. Moreover, the tools §4.1.2 for evaluating three-point Witten diagrams with external
fields of arbitrary integer spin also apply to massive fields and can be easily extended to rep-
resentations of mixed-symmetry, as relevant for string theory. In particular, these methods
and results are applicable beyond higher-spin-symmetric set-ups.

• The holographic reconstruction of interactions can also in principle be executed at quartic
and higher-orders. So far, there have been results for the quartic self-interaction of the scalar
in the minimal bosonic higher-spin theory [32, 33, 166]. At this order the question of local-
ity becomes important, as one is inevitably led to consider interactions with an unbounded
number of derivatives. For investigations in this direction, see [33, 37, 166–176].

40Together with its completion [34] for the complete action at cubic order (4.65) – i.e. for any triplet of integer spins
s1-s2-s3.
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