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We generalize the Catani Hautmann formalism to calculate the Pgq and Pqq transverse momentum
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equation for gluons that takes into account the effect of non-diagonal quark-to-gluon splittings.
In order to write down a consistent equation we resum virtual corrections coming from the gluon
channel and demonstrate that this implies a suitable regularization of the Pgq singularity, corre-
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manner generalized to a nonlinear evolution equation which takes into account effects due to the
presence of high gluon densities.
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1. Introduction

Parton distribution functions (PDFs) together with parton level matrix elements allow for a
very accurate description of “hard” events in hadron-hadron and hadron-electron collisions. The
bulk of such analysis is carried out within the framework of collinear factorization [1, 2]. How-
ever, there exist classes of multi-scale processes where the use of more general schemes is of
advantage. An example of such a process is a high-energy or low x limit of hard processes with
s�M2� Λ2

QCD where x = M2/s. In such a scenario it is necessary to resum terms enhanced by
logarithms ln1/x to all orders in the αs, which is achieved by BFKL evolution equation [3,4]. The
resulting formalism called high-energy or kT factorization [5, 6] provides a factorization of such
cross-sections into a TMD coefficient or “impact factor” and an “unintegrated” gluon density.

Unfortunately, the high-energy factorization framework has important limitations that makes
it cumbersome to apply it directly to an arbitrary process. For example it takes into account only
gluon densities which is not acceptable for some quark initiated processes. What is more, since it
is valid only in the low x region (x . 10−2) by construction it is restricted to exclusive observables
such that x of both gluons is fixed; e.g. description of processes involving fragmentation function,
requiring integration over full x range, rises problems.

In this contribution we summarize our efforts [7, 8] to formulate a prescription to accommo-
date the advantages of both collinear and high-energy factorizations. In particular, our goal is to
construct evolution equation (or rather a system of equations) for unintegrated parton distributions
(with kT -dependence) that would have the following properties: (i) it should resum the low x log-
arithms, (ii) has smooth continuation to the large x region, (iii) include both quarks and gluons,
and (iv) reproduce the correct collinear limit given by DGLAP. To this end we extend the Catani-
Hautmann (CH) [9] and Curci-Furmanski-Petronzio (CFP) [10] formalisms, which allows us for
calculation of kT -dependent splitting functions. For the moment we concentrate only on the real
part of the quark splitting functions, and in the second step we use the newly calculated Pgq splitting
to construct a low x evolution equation incorporating quark contributions.

2. TMD splitting functions

So far we have calculated the real emission parts of the quark TMD splitting functions (Pqg, Pgq,
Pqq). The method used for the calculation is based on the two-particle-irreducible (2PI) expansion
of refs. [10] and [9]. The details of the method can be found in [7] where the computations were
performed. In this contribution we only highlight two crucial ingredients used in the calculation.
The first are projection operators used to obtain factorization by decoupling the 2PI kernels in the
momentum and helicity space. These projectors are generalization of the ones introduced in [10]
accounting for the more general kinematics (featuring off-shell momenta on the incoming legs of
the 2PI kernels):

Pµν

g, in =
kµ

⊥kν

⊥
k2 , Pq, in =

y/p
2
, (2.1)

where the corresponding kinematics is shown in Fig. 1a and the involved momenta are parametrized
as follows:

kµ = ypµ + kµ

⊥, qµ = xpµ +qµ

⊥+
q2 +q2

2xp ·n nµ , p′ = k−q. (2.2)
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Figure 1: (a) Kinematics of a parton splitting. An initial parton with transverse momentum k splits
into a parton with transverse momentum q, emitting an on-shell parton with momentum p′ = k−q.
(b) The only diagram contributing to determination of the first order P(0)

gq TMD splitting function.

The second new element is the construction of an appropriate vertex that can be used in the pres-
ence of off-shell particles such that the obtained results are gauge invariant. We quote here only
one of the vertices that is needed for calculation of the Pgq splitting:

Γ
µ

g∗q∗q(q,k, p′) = igta
(

γ
µ − pµ

p ·q/k
)
. (2.3)

The remaining vertices and explanations on how we construct them can be found in [7].
The prescription to compute the TMD splitting function P̃(0)

i j follows from the ladder expansion
of refs. [9, 10] and reads:

K̂i j

(
z,

k2

µ2 ,ε

)
= z

∫ d2+2εq
2(2π)4+2ε

∫
dq2P j, in⊗ K̂(0)

i j (q,k)⊗Pi,out︸ ︷︷ ︸
P̃(0)

i j (z,k,q̃,ε)

Θ(µ2
F +q2),

(2.4)

where K̂(0)
i j is the first order expansion of the 2PI kernel of [10], and P j, in and Pi,out are the projec-

tion operators discussed above. As an example, in Fig. 1b, we show the diagram representing the
first order expansion of K̂(0)

gq which is the only diagram necessary to compute the NLO P(0)
gq TMD

splitting function in the presented approach. Using eq. (2.4) and integrating the angular dependence
we obtain the following angular averaged TMD splitting functions:

P(0)
qg

(
z,

k2

q̃2 ,ε

)
= TR

(
q̃2

q̃2 + z(1− z)k2

)2
[

z2 +(1− z)2 +4z2(1− z)2 k2

q̃2

]
, (2.5)

P(0)
gq

(
z,

k2

q̃2 ,ε

)
=CF

[
2q̃2

z|q̃2− (1− z)2k2| −
q̃2(q̃2(2− z)+k2z(1− z2))

(q̃2 + z(1− z)k2)2 +
εzq̃2(q̃2 +(1− z)2k2)

(q̃2 + z(1− z)k2)2

]
,

(2.6)

P(0)
qq

(
z,

k2

q̃2 ,ε

)
=CF

(
q̃2

q̃2 + z(1− z)k2

)[
q̃2 +(1− z2)k2

(1− z)|q̃2− (1− z)2k2| (2.7)

+
z2q̃2− z(1− z)(1−3z+ z2)k2 +(1− z)2ε(q̃2 + z2k2)

(1− z)(q̃2 + z(1− z)k2)

]
,
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where q̃ = q− zk and z = x/y. The P(0)
qg splitting function have been obtain previously [9, 11, 12]

and we reproduce this result. On the other hand the results for P(0)
gq and P(0)

qq are new.

3. Evolution equation with quarks

Our starting point is the leading order BFKL equation which describes evolution in ln1/x for
the dipole amplitude in the momentum space:

F (x,q2) = F 0(x,q2)+αs

∫ 1

x

dz
z

∫ d2p′

πp′2
[
F (x/z, |q+p′|2)−θ(q2−p′2)F (x/z,q2)

]
(3.1)

where αs =
CAαs

π
. This form is particularly useful to promote the BFKL equation to a system of

equations for quarks and gluons. We will incorporate a contribution from quarks in the follow-
ing form: αs

2π

∫ 1
x

dz
z

∫ d2p′
πp′2 Pgq(z,p′,q)Q(x/z, |q+p′|2), where Q(x/z, |q+p′|2) is a distribution of

quarks. Next we introduce a resolution scale µ allowing us to decompose the kernel of the glu-
onic part of (3.1) into a resolved real emission part with p′2 > µ2 and the unresolved part with
p′2 < µ2. Additionally, since the integral over p′ in the quark contribution is divergent it needs to
be regulated. In the following we achieve this through introducing the same cut-off µ as used for
the gluonic part. Technically this is obtained through including a theta function θ(p′2−µ2) in the
quark term:1

F (x,q2) = F 0(x,q2)+αs

∫ 1

x

dz
z

∫ d2p′

πp′2
F (x/z, |q+p′|2)θ(p′2−µ

2) (3.2)

+αs

∫ 1

x

dz
z

∫ d2p′

πp′2
[
F (x/z, |q+p′|2)θ(µ2−p′2)−θ(q2−p′2)F (x/z,q2)

]
+

αs

2π

∫ 1

x
dz
∫ d2p′

πp′2
Pgq(z,p′,q)Q(x/z, |p′+q|2)θ(p′2−µ

2) .

Equation (3.2) is in a suitable form to perform resummation of the virtual and unresolved emissions
by going to the Mellin space (x→ ω→ x). The detailed steps of this resummation are presented in
ref. [8] in the following we only present the final result:

F (x,q2) = F̃ 0(x,q2)+
αs

2π

∫ 1

x

dz
z

∫
µ2

d2p′

πp′2

[

∆R(z,q2,µ2)

(
2CAF

(
x
z
, |q+p′|2

)
+CFQ

(
x
z
, |q+p′|2

))
−
∫ 1

z

dz1

z1
∆R(z1,q2,µ2)

[
P̃′gq

(
z
z1
,p,q

)
z
z1

]
Q

(
x
z
, |q+p′|2

)]
.

(3.3)

From the above expression we can see that the 1
p′2 singularity of the quark term is now regularized

by the Regge formfactor ∆R(z,q2,µ2) ≡ exp
(
−αs ln 1

z ln q2

µ2

)
in a direct analogy with the gluonic

term. We note that the above resummation can be in a straight forward manner extended [8,13,14]

1Note that, in the gluon case, this additional scale is just for technical convenience as 1/p′2 is regularized by the
virtual contribution, in the case of quarks, µ scale is really needed for regularizing the corresponding expression.
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Figure 2: The figure visualizes the cutoff dependence of the low z and finite z quark terms con-
tributing to the gluon density.

to the situation where the gluon density is large and therefore subject to a nonlinear evolution
equation, taking into account saturation effects [15].

As a last step we check the stability of the obtained result (3.3) with respect to the cut-off µ .
To this end we perform a convolution of the low z and fine z parts of the Pgq kernel with the quark
density [16]. This leads us to the conclusion that as µ2→ 0 the cutoff dependence gets weaker, see
Fig. 2.

4. Conclusions

We have generalized a framework of Catani and Hautmann and used it to calculate the real
emission k⊥-dependent Pqq, Pgq and Pqg splitting functions. These splitting functions were then
used to construct evolution equation for gluons, receiving contribution from quarks. We have
demonstrated that the singularity of the Pgq kernel can be regularized by the means of the same cut-
off as in case of BFKL kernel. Furthermore, resumming the combined contribution of the virtual
part and the small p′ real part of the BFKL kernel to all orders in the strong coupling, one finds
that both the pure gluonic contribution to the evolution equation as well as the quark induced term
are finite if we send this cut-off to zero. In particular we have demonstrated, via performing one
iteration of the kernels, that the equation has a realistic chance to be stable against variation of the
cutoff parameter, since after one iteration the result stabilizes.

To perform a fully consistent study of the complete system of kT -dependent evolution equa-
tions, we need to calculate the virtual contributions to the quark-to-quark splitting function in the
framework of kT -factorization. Additionally, to demonstrate the completeness of our framework,
the Pgg splitting function should be recalculated using the presented approach.
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