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1. Introduction

In the study of nucleon tomography, it is often useful to consider the Wigner distribution
W (x,kkk,bbb) [1] as the phase space distribution of partons inside the nucleon. In addition to the
longitudinal momentum fraction x, the Wigner distribution depends on the transverse momentum kkk
and the impact parameter bbb of partons. Such a five-dimensional distribution encodes the complete
single-parton information of the nucleon, and can be considered as a ‘mother distribution’ as it
reduces to the more familiar three-dimensional distributions, the transverse momentum dependent
(TMD) distribution and the generalized parton distribution (GPD), upon integration over bbb and
kkk, respectively. In addition to the Wigner distribution, two associated phase space distributions
have been proposed. One is the generalized TMD (GTMD) distribution G(x,kkk,∆∆∆) [2] which is
the Fourier transform of the Wigner distribution bbb ↔ ∆∆∆. The other is the Husimi distribution
H(x,kkk,bbb) [3] obtained from the Wigner distribution via Gaussian smearing in both bbb and kkk. These
distributions provide a multifaceted insight into the complicated partonic structure of the nucleon.

Naturally, these five dimensional distributions contain richer physics than TMDs and GPDs
combined. By separately studying the kkk and bbb distributions via TMD and GPD, one can not learn
about the correlation between bbb and kkk. Such a correlation is practically important, most prominently
for the understanding the parton orbital angular momentum. Indeed, the proper, gauge-invariant
definition of the canonical orbital angular momentum in QCD involves the Wigner or Husimi dis-
tribution for quarks and gluons [4, 5, 3]

Lq,g =
∫

dxdbbbdkkk(bbb× kkk)z

{
Wq,g(x,kkk,bbb)

Hq,g(x,kkk,bbb) .
(1.1)

It is clear that three dimensional distributions which depend on either bbb or kkk do not give access to
Lq,g.

Unfortunately, it is very difficult to measure these phase space distributions in QCD, or more
generally, in any quantum theory. Because of this, previous studies on this subject have been mostly
restricted to formal theoretical issues and simple model calculations, with little reference to exper-
iments. There are however known examples in quantum optics [8] where one can experimentally
measure the Wigner distribution. Here we show that the gluon phase space distribution at small-x
is actually measurable in lepton-nucleon and nucleon-nucleus scattering.

2. Probing the phase space distributions in ep and pA collisions

The gluon Wigner distribution is defined by

xW (x,kkk,bbb) =
2

P+

∫ d3z
(2π)3

d2∆∆∆

(2π)2 e−ixP+z−−ikkk·z〈P+∆∆∆

2 |Tr[U [+]F+i(bbb+ z
2)U

[−]F+i(bbb− z
2)]|P−

∆∆∆

2 〉,

(2.1)

where U [±] is the future (past)-pointing U-shaped Wilson line along the light-cone which makes
the nonlocal operator gauge invariant. At small-x one may approximate e−ixP+z− ≈ 1 and rewrite
(2.1) as

xW (x,kkk,bbb) =
2Nc

αs

∫ d2rrr
(2π)2 eikkk·rrr

(
1
4

∇
2
bbb + kkk2

)
SY (rrr,bbb) , (2.2)
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where SY (rrr,bbb) (Y = ln1/x is the rapidity) is the so-called dipole S-matrix

SY (rrr,bbb) =
〈

1
Nc

Tr
[
U(bbb+ rrr

2)U
†(bbb− rrr

2)
]〉

Y
, (2.3)

which is the forward S-matrix of a qq̄ pair of size |rrr| scattering off a hadron/nucleus at impact
parameter bbb. Note that S is classically independent of x = e−Y , but it acquires a x-dependence due
to the quantum evolution effect. By Fourier transforming with respect to bbb, one obtains the gluon
GTMD

xW (x,kkk,∆∆∆) =
2Nc

αs

(
kkk2− ∆∆∆

2

4

)
S̃Y (kkk,∆∆∆) . (2.4)

For an unpolarized nucleon, S̃(kkk,∆∆∆) is a function of the magnitudes k = |kkk|,∆ = |∆∆∆| and the relative
azimuthal angle φk∆ = φk−φ∆. At small-x, the dominant angular dependence is elliptic, so that we
can approximately write

S̃Y (kkk,∆∆∆) = S̃0(k,∆)+2cos2φk∆S̃1(k,∆)+ · · · . (2.5)

Numerically, S̃1 is at most a few percent of S̃0 in magnitude, but has very different dependences on
k and ∆ [7]. It can thus lead to distinct experimental signatures as we discuss shortly.

Eq. (2.4) shows that the problem of measuring the Wigner distribution reduces to that of find-
ing a process which is sensitive to both the size rrr and impact parameter bbb of the dipole S-matrix.
In order to be sensitive to bbb, the process has to be diffractive: The proton scatters elastically with
momentum transfer ∆∆∆. In order to be sensitive to rrr, one should probe the relative momentum be-
tween the quark and antiquark. A process which meets these criteria is exclusive diffractive dijet
production in ep collisions [6] where the virtual photon splits into a qq̄ pair (dipole) and scatters
off the proton. The pair is then detected as a dijet in the forward region with the total transverse
momentum kkk1 + kkk2 = −∆∆∆ and the relative momentum PPP = 1

2(kkk2− kkk1). The cross section can be
written as, for the transversely polarized virtual photon,

dσ

dy1d2kkk1dy2d2kkk2
∝

∣∣∣∣∫ d2qqqS̃(qqq,∆∆∆)
PPP−qqq

(PPP−qqq)2 + ε2

∣∣∣∣2 , (2.6)

where ε2 ∝ Q2 (photon virtuality). For generic values of Q2, it is difficult to extract S̃ from the
measured cross section by inverting the convolution integral over qqq. To overcome this difficulty,
Ref. [6] suggested to look at the small-Q2 region. There the qqq-integral receives dominant contribu-
tions from qqq∼ PPP and the cross section roughly goes as S̃(PPP,∆∆∆) squared. We then see from Eq. (2.5)
that the cross section has a cos2φ azimuthal angle modulation

dσ

dy1dkkk1dy2dkkk2
= dσ0 +2cos2(φP−φ∆)dσ1 . (2.7)

To make the this argument more precise, let us consider the limit Q2→ 0. Substituting (2.5)
into (2.6), one can perform the angular integral analytically∫

d2qqqS̃(qqq,∆∆∆)
PPP−qqq

(PPP−qqq)2 =−2πPPP
P2

(
A+ cos2(φP−φ∆)B

)
, (2.8)
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where

A(P,∆) =−
∫ P

0
dqqS̃0(q,∆) , B(P,∆) =

∫
∞

0
dqqS̃1(q,∆)

(
− q2

P2 θ(P−q)+
P2

q2 θ(q−P)
)
.(2.9)

If one knows A and B, one can determine S̃0,1 by inverting the q-integrals in (2.9). Indeed, S̃0

is trivially obtained as S̃0 = − 1
P

∂A
∂P . Reconstructing S̃1 from B is more tricky, but it can be done

exactly [9]. The result is

S̃(P,∆) =−∂B(P,∆)
∂P2 +

2
P2

∫ P2

0

dP′2

P′2
B(P′,∆) . (2.10)

Experimentally, the region Q2 ≈ 0 can be studied in the photoproduction limit of lepton-nucleon
scattering. Another very interesting possibility is ultraperipheral nucleon-nucleus collisions [9] in
which the nucleus is treated as a source of Weiszäcker-Williams photons which are almost real. In
the latter case the cross section is given by

dσ pA

dy1dkkk1dy2dkkk2
=
∫

dω
dN
dω

dσ pγ

dy1dkkk1dy2dkkk2

∝
dN
dω

(
A2 +2ABcos2(φP−φ∆)

)
, (2.11)

where ω is the photon energy, and ω = 1
2(k1ey1 + k2ey2) in the second line. The photon flux dN

dω

is calculable from QED and is enhanced by the atomic number squared Z2. This compensates the
smallness of the electromagnetic coupling, making the observable particularly promising for the
measurement of the gluon Wigner/GTMD distribution.

3. Gluon orbital angular momentum at small-x

Finally, we consider the case in which the nucleon is longitudinally polarized and discuss the
gluon orbital angular momentum (OAM) [10]. The relation between the OAM and the Wigner
distribution (1.1) actually holds at the density level

Lg(x) = 2
∫

dbbbdkkk(bbb× kkk)zWg(x,kkk,bbb) . (3.1)

The gauge invariant ‘OAM parton distribution’ Lg(x) was originally defined in [11] in a different
manner, but it actually coincides with the above, more intuitive definition. The small-x behavior of
Lg(x) can be studied in a similar vein to the unpolarized case discussed in the previous section, but
there is an important difference. If one makes the approximation e−ixP+z− ≈ 1 which led to (2.2),
one loses all information about the longitudinal spin. In order to obtain nonvanishing Lg(x), one
has to keep the first subleading correction e−ixP+z− ≈ 1− ixP+z−. Importantly, due to the factor
z−, Lg(x) can no longer be expressed solely in terms of ‘infinite’ Wilson lines U(xxx) = U∞,−∞(xxx)
which go from z− = −∞ to z− = +∞. Instead, it inevitably involves operators which consist of
‘half-infinite’ Wilson lines such as

Tr
[
U(xxx)U−∞,z−(yyy)DiUz−,∞(yyy)

]
(3.2)
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While this looks unfamiliar, remarkably, the same operator shows up in the analysis of the polarized
gluon distribution ∆G(x) at small-x. This means that there is a linear relation between Lg(x) and
∆G(x)

Lg(x) =−2∆G(x)+ · · · . (3.3)

In Ref. [10], it has been argued that the neglected terms in (3.3) is small. If this is indeed the case,
(3.3) has significant implications for the nucleon spin sum rule. Currently there are huge uncer-
tainties in the gluon helicity ∆G =

∫ 1
0 dx∆G(x) from the small-x region. If, in future, the small-x

contribution to ∆G is precisely determined and turns out to be large, one should expect an even
larger contribution with an opposite sign from the gluon OAM in the same x-region.

In conclusion, the partonic Wigner distribution is no longer a purely theoretical object. At
least the gluon Wigner distribution can be measured experimentally, and a first proposal about
the measurement of the quark Wigner distribution has appeared very recently. These distributions
contain even richer information about the nucleon tomography than TMDs and GPDs. It is thus
very interesting to explore this direction in the future experiments at the Electron-Ion Collider
(EIC).
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