
P
o
S
(
D
I
S
2
0
1
7
)
0
6
4

Implementing consistent NLO factorization in single
inclusive forward hadron production

B. Ducloué∗

Department of Physics, P.O. Box 35, 40014 University of Jyväskylä, Finland
and
Helsinki Institute of Physics, P.O. Box 64, 00014 University of Helsinki, Finland
E-mail: bertrand.b.ducloue@jyu.fi

T. Lappi
Department of Physics, P.O. Box 35, 40014 University of Jyväskylä, Finland
and
Helsinki Institute of Physics, P.O. Box 64, 00014 University of Helsinki, Finland
E-mail: tuomas.v.v.lappi@jyu.fi

Y. Zhu
Department of Physics, P.O. Box 35, 40014 University of Jyväskylä, Finland
and
Helsinki Institute of Physics, P.O. Box 64, 00014 University of Helsinki, Finland
E-mail: yan.zhu@jyu.fi

Single inclusive forward hadron production in high-energy hadron collisions can provide an im-
portant test of the Color Glass Condensate picture at small x. Recent studies of this process at
next-to-leading order have led to problematic results, with cross sections becoming negative at
large transverse momenta. We study a new formulation of this quantity proposed recently by
Iancu et al. We show that it leads to physical results up to large transverse momenta at fixed
coupling. Taking into account running coupling effects in a way that is consistent with existing
DIS calculations still poses a challenge.
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1. Introduction

Forward particle production in high-energy hadron collisions can provide valuable informa-
tion on the small-x behavior of parton densities in the target. In this regime, the gluon density is
expected to saturate due to nonlinear recombination effects and to evolve according to the Balitsky-
Kovchegov (BK) equation [1, 2]. Many studies have been performed in this formalism at leading
order (LO) accuracy. Recently progress has been made to extend this formalism to next-to-leading
order (NLO) accuracy. In particular, the cross section for single inclusive hadron production has
been calculated at NLO in Refs. [3, 4]. Unfortunately, the first numerical evaluation of these ex-
pressions showed that at large transverse momentum the NLO corrections are large and negative,
making the total NLO cross section negative [5]. Many works have been devoted to understanding
this issue [6, 7, 8, 9]. Recently a new formulation of the NLO cross section, leading to explicitly
positive cross sections, was proposed [10]. The goal of the present work is to present a practical
numerical study of this formulation and compare it to the previously used “CXY” formulation.

2. Expressions for the NLO cross section

In this work we focus on the q→ q channel, which exhibits the same general features as the
total cross section [9]. In addition we leave out the fragmentation functions which do not affect
our discussion but would make the numerical implementation more cumbersome. Following the
notations used in [9], we write the unsubtracted CXY quark multiplicity as [3, 4]

dN pA→qX

d2kdy
=xpq(xp)

S0(k⊥)
(2π)2

+
αs

2π2

∫
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xp
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ξ
q
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}
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with

I (k⊥,ξ ,X(ξ ))=
∫ d2q

(2π)2
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k−q

(k−q)2 −
k−ξ q
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These expressions involve S , the Fourier-transform of the dipole correlator

S (k⊥) = S (k⊥,b) =
∫

d2re−ik·rS(r) , S(r = x−y) =
〈

1
Nc

TrV (x)V †(y)
〉
, (2.6)

where V (x) is a fundamental representation Wilson line in the target’s color field.
The kinematical variables appearing in Eqs. (2.1)-(2.5) are xp = k⊥ey/

√
s, xg = k⊥e−y/

√
s

and k⊥ = |k|. The variable ξ is the longitudinal momentum fraction of the incoming quark taken
by the fragmenting one, i.e. the incoming quark carries a fraction xp/ξ of the projectile proton’s
momentum. xp and xg correspond to the longitudinal momentum fractions probed at leading order
in the projectile and the target, respectively.

So far we have not specified the rapidity dependence X(ξ ) of the dipole correlators appearing
in these expressions. In Ref. [5] this dependence is taken as X(ξ ) = xg, which is the longitudi-
nal momentum fraction probed in the target at leading order. On the contrary, the discussion in
Ref. [10] leads to a dependence of X on the kinematics of the radiated gluon at NLO, according
to X(ξ )≈ xg/(1−ξ ) in the usual “Regge” kinematics where it is assumed that all transverse mo-
menta are of the same order. As will be shown in the following, the difference between the two
choices X(ξ ) = xg and X(ξ ) = xg/(1−ξ ) becomes important at large transverse momentum.

2.1 Nc-terms

We first consider the NLO corrections proportional to the Nc color factor in Eq. (2.1). It was
shown in Ref. [9] that these corrections are the ones leading to negative cross sections at large
transverse momentum in Ref. [5]. One can write the sum of the leading order contribution and the
Nc corrections as

dNLO+Nc

d2kdy
= xpq(xp)

S0(k⊥)
(2π)2 +αs

∫ 1−xg/x0

0

dξ

1−ξ
K (k⊥,ξ ,X(ξ )), (2.7)

where we introduced the function K , defined as

K (k⊥,ξ ,X(ξ ))=
Nc

(2π)2 (1+ξ
2)
[
θ(ξ−xp)

xp

ξ
q
(

xp

ξ

)
J (k⊥,ξ ,X(ξ ))− xpq(xp)Jv(k⊥,ξ ,X(ξ ))

]
.

(2.8)
In Eq. (2.7), the correlator S0 in the lowest order contribution corresponds to an unevolved target
and the upper limit on the ξ integral ensures that the target is not probed at values of X = xg/(1−ξ )

larger than the initial condition x0. Since K (k⊥,ξ ,X) does not vanish when ξ → 1 at fixed X ,
the integral over ξ in the cross section develops a large logarithm at small xg, which should be
resummed in the Balitsky-Kovchegov evolution of the target. One can then identify S0 with the
initial condition for this evolution, at the initial rapidity ln(1/x0). This allows to rewrite Eq. (2.7)
as

dNLO+Nc

d2kdy
= xpq(xp)

S (k⊥,x0)

(2π)2 +αs

∫ 1−xg/x0

0

dξ

1−ξ
K (k⊥,ξ ,X(ξ )) , (2.9)

which is explicitly positive at all transverse momenta as long as the initial condition is. Noting that
using the expressions of J and Jv one can write the BK equation in its integral form,

S (k⊥,xg) = S (k⊥,x0)+2αsNc

∫ 1−xg/x0

0

dξ

1−ξ
[J (k⊥,1,X(ξ ))−Jv(k⊥,1,X(ξ ))] , (2.10)
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we can also rewrite Eq. (2.9) as

dNLO+Nc

d2kdy
= xpq(xp)

S (k⊥,xg)

(2π)2 +αs

∫ 1−xg/x0

0

dξ

1−ξ
[K (k⊥,ξ ,X(ξ ))−K (k⊥,1,X(ξ ))] , (2.11)

which is strictly equivalent and thus also positive. In the following we will refer to the formula-
tion (2.9) as the “unsubtracted” version of the cross section and (2.11) as the “subtracted” version.

Let us now discuss the relation of Eqs. (2.9) and (2.11) to the CXY formulation studied in
Ref. [5]. This relation is most easily obtained from the “subtracted” formulation (2.11), by replac-
ing the rapidity of the dipole correlators by X(ξ ) = xg and the upper limit of the ξ integration by 1.
This approximation is justified by considering that, because of the subtraction of K (k⊥,1,X(ξ )),
the integral over ξ in Eq. (2.11) should be dominated by the region where ξ is close to 0.

2.2 CF-terms

We now consider the NLO corrections proportional to CF in Eq. (2.1). In Ref. [9] it was shown
that these corrections are positive and thus do not contribute to the negativity problem at large
transverse momentum. However these terms present collinear divergences that have to be absorbed
into the DGLAP evolution of the projectile’s quark distributions and in the fragmentation functions.
After subtracting the corresponding 1/ε poles, we can write the CF-terms as

dNCF

d2kdy
≡ αs

2π2CF

[∫ 1−xg/x0

xp

dξ
1+ξ 2

1−ξ

xp

ξ
q
(

xp

ξ

)
I finite(k⊥,ξ ,X(ξ ))

−
∫ 1−xg/x0

0
dξ

1+ξ 2

1−ξ
xpq(xp)I

finite
v (k⊥,ξ ,X(ξ ))

]
, (2.12)

with

I finite(k⊥,ξ ,X(ξ )) =
∫ d2r

4π
S(r,X(ξ )) ln

c2
0

r2µ2

(
e−ik·r +

1
ξ 2 e−i k

ξ
·r
)

−2
∫ d2q

(2π)2
(k−ξ q) · (k−q)
(k−ξ q)2(k−q)2 S (q⊥,X(ξ )) , (2.13)

I finite
v (k⊥,ξ ,X(ξ )) =

S (k⊥,X(ξ ))

2π

(
ln

k2
⊥

µ2 + ln(1−ξ )2
)
. (2.14)

In the case of the Nc-terms, the choice X = xg/(1−ξ ) was motivated by the relation to the integral
BK equation. Since the CF-terms are not related to the rapidity evolution of the target, one could
in principle choose another scale here. However, here we choose to evaluate the dipole correlators
at the same rapidity in the CF and Nc terms, since doing otherwise would be quite unnatural. This
leads to the same limit ξ < 1− xg/x0 on the ξ integral.

3. Results

Let us now turn to our numerical results. For simplicity we consider only contributions from up
quarks in the projectile, and their distribution is obtained from the MSTW2008 NLO parametriza-
tion [11]. We choose the factorization scale Q = k⊥, the center of mass energy

√
s = 500 GeV and

the rapidity of the produced quark y = 3.2. We use a fixed value for the strong coupling, αs = 0.2,

3



P
o
S
(
D
I
S
2
0
1
7
)
0
6
4

Implementing consistent NLO factorization in single inclusive forward hadron production B. Ducloué

both in the expression of the cross section and when solving the LO BK equation which provides
the rapidity evolution of the dipole correlators. The initial condition for this evolution is taken
according to the MV parametrization [12],

S(r,x0) = exp

[
−

r2Q2
s,0

4
ln
(

1
|r|ΛQCD

+ e
)]

, (3.1)

and we take Q2
s,0 = 0.2 GeV2 and ΛQCD = 0.241 GeV. In Fig. 1 we show our results for the mul-

tiplicity as well as the NLO/LO ratio when using the unsubtracted (2.9) and the subtracted (2.11)
formulations for the Nc terms. We see that these formulations are indeed equivalent and lead to pos-
itive results at all transverse momenta. The CXY approximation, on the contrary, leads to negative
cross sections for k⊥ & 10 GeV.
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Figure 1: Results at fixed coupling for
√

s = 500 GeV and y = 3.2, using the unsubtracted and subtracted
expressions or the CXY approximation. Left: multiplicity. Right: NLO/LO ratio.

The equivalence between the unsubtracted and subtracted formulations holds only if one uses
the same value for αs in the cross section and when solving the BK equation. Most LO studies tak-
ing into account running coupling corrections, such as Ref. [13], use the Balitsky prescription [14]
for this. Being a coordinate-space prescription, this cannot be used exactly in our momentum
space formulation. Trying to use BK solutions obtained with the Balitsky prescription together
with a momentum-space formulation of the cross section leads to a breaking of the equivalence
between (2.9) and (2.11), with the subtracted version leading to negative cross sections at large
transverse momenta [15]. A possible solution to this problem would be to perform the whole
calculation in coordinate space, which allows to choose a running coupling prescription which
matches the Balitsky one in the appropriate ξ → 1 limit. However, as shown in Ref. [15], a rather
straightforward implementation of this approach leads to unphysical results, with a NLO result
orders of magnitude larger than the LO one.

4. Conclusions

In this work we have shown that the formulation of the NLO cross section for single inclusive
hadron production proposed in Ref. [10] indeed leads to physical results at large transverse mo-
menta for fixed values of the running coupling. Still, further developments will be needed before
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phenomenological studies will be possible. First, one should take into account the other (q→ g,
g→ q and g→ g) channels as well as the fragmentation functions, which should in principle be
rather straightforward. Another issue is related to finding a running coupling scheme which would
be consistent with previous studies of DIS. Finally, a complete NLO calculation should use dipole
correlators obtained by solving the NLO BK equation [16, 17], or at least a collinearly-resummed
version of the LO equation [18, 19] that can be made to include a large part of the NLO effects [20].
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