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Recently, Liou, Mueller and Munier have argued that proton-nucleus collisions at the LHC may
give access to the full statistics of the event-by-event fluctuations of the gluon density in the
proton. Indeed, the number of particles produced in an event in rapidity slices in the fragmentation
region of the proton may, under some well-defined assumptions, be directly related to the number
of gluons which have a transverse momentum larger than the nuclear saturation scale present in
the proton at the time of the interaction with the nucleus. A first calculation of the probability
distribution of the number of gluons in a hadron was performed, using the color dipole model. In
this talk, we review this proposal, and present preliminary numerical calculations which support
the analytical results obtained so far.
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1. Introduction

The LHC has opened a new window on hadronic physics by enabling the measurement of a
wealth of new observables in the collisions of protons and nuclei, at unprecedented center-of-mass
energies. In particular, there is a lot of interest in trying to pin down higher moments or even the
full distribution of the event-by-event fluctuations of observables, with a view to characterizing how
hadrons look in individual events. For example, it has been proposed to use diffractive dissociation
processes to constrain the fluctuations of the shape of the proton [1]. This contribution reports on
an effort to understand the fluctuations of the integrated gluon density in the proton.

In the recent paper of Ref. [2], it has been proposed to study the event-by-event fluctuations
of the multiplicity of particles produced in specific regions in rapidity in the final state of proton-
nucleus collisions, arguing that such an observable would be directly related to the probability
distribution of the gluon density in the proton. Considering an onium instead of a proton, a calcu-
lation of the probability of particle numbers was attempted, based on the color dipole model [3, 4]
to represent the QCD evolution, modified in the infrared in order to mimick confinement.

We shall review this simple picture for particle production and the corresponding calculation
of the multiplicity distribution, and present preliminary numerical evaluations of the distribution of
the number of particles produced in onium-nucleus collisions.

1.1 Picture of particle production in proton-nucleus collisions

Let us consider the collision of a proton with a large nucleus. The proton is an initially dilute
object, while the nucleus is a dense object characterized by the saturation momentum QA in its rest
frame. The physical meaning of QA is the following: To a globally colorless probe whose colored
constituents carry the relative transverse momentum k � QA (or are separated by the distance
r ∼ 1/k� 1/QA), the nucleus appears dilute, while a probe characterized by k� QA is absorbed
with probability one in an interaction with this nucleus [4].

The wave function of a nucleus is almost the same as the ground-state wave function of nuclear
matter, whose density is essentially uniform [2]. If we look at it from the point of view of a probe
at rest in a frame in which it has the rapidity y0 (which we shall call the “y0-frame”1), then the
QCD evolution populates its Fock state with many gluons, but in an almost deterministic way since
it starts already with a large number of valence quarks. Hence the state of such a nucleus is still
essentially characterized by a single momentum scale (unfluctuating, i.e. identical in each event),
the saturation momentum Qs(y0), larger than QA by a factor which grows exponentially with y0.

In the y0-frame, the proton has the rapidity Y−y0, where Y is the total rapidity of the scattering
determined by the center-of-mass energy. In each event, the proton is found in a given Fock state
essentially made of many gluons, produced through QCD evolution. Since the proton is a dilute
object in its rest frame, when viewed at a nonzero rapidity, its content is expected to strongly
fluctuate from event to event, unlike the nucleus. We choose y0 such that there is a significant QCD
evolution in the proton, but not too large, in such a way that nonlinear saturation effects can always
be neglected.

The effect of the interaction of this proton with the nucleus is to filter the gluons which have
a transverse momentum less than Qs(y0) (thanks to multiple scatterings with the nucleus which

1We borrow this terminology and the notations from Ref. [5].
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transfer them energy to put them on-shell). These gluons go to the final state and hadronize. The
other gluons essentially do not interact and go back to the vacuum at finite time. This intuitive
picture is backed by QCD calculations [4].

Hence the particle multiplicity measured in the proton fragmentation region in an event is
essentially proportional to the gluon number density xG integrated at the scale Qs(y0) in the corre-
sponding realization of the QCD evolution. More quantitatively, the number dN/dy2 of particles
per unit rapidity measured around the rapidity y2 = 0 in the y0-frame reads [5]

dN
dy2

∣∣∣∣
y2'0

= xG(x,Q2
s (y0)), (1.1)

where x = e−(Y−y0)Qs(y0)/M with M the mass of the onium. Strictly speaking, this formula is
established as an equality between mean quantities (averaged over events), but we shall assume
that it also holds for each event considered separately. According to this picture, measuring the
distribution of the particle number in the final state of pA collisions amounts to measuring the
fluctuations of the gluon number density in the proton.

So far, experimental and theoretical studies of the partonic content of the proton have focused
on the expectation value of parton number densities (related to total cross sections, for example
of deep-inelastic scattering processes) and their second moments (related to diffractive dissocia-
tion). Hence such an observable in proton-nucleus scattering would give access to genuinely new
information on the parton densities, namely their full probability distribution.

We shall now present a QCD calculation of the fluctuations of the gluon number density in a
dilute hadron.

1.2 How a hadronic state dresses at high energies: the color dipole model

Instead of addressing proton-nucleus collisions, we study the scattering of onia (which have the
advantage of being color dipoles) of initial fixed transverse size r0 off large (i.e. infinite transverse
extent) nuclei. An onium is the simplest model of a dilute hadron, and the main features of our
calculation may go over to the proton case.

In a frame in which the rapidity y = Y − y0 of the onium is large, the Fock state is a dense
system of gluons. The leading contribution to the probability of such a state (i.e. the large-y
asymptotics) is obtained by calculating the splitting of the initial quark-antiquark into a state made
of the qq̄ pair supplemented with a soft gluon. The latter may split further into a denser state
populated with softer and softer gluons. This is essentially the physics captured by the Balitsky-
Fadin-Kuraev-Lipatov (BFKL) equation [4].

Taking the large number-of-color (Nc) limit simplifies the color structure of these complicated
gluonic states, and leads to the famous color dipole model [3]. The relevant Fock states may be
constructed iteratively from one single elementary process: The splitting of a dipole of size r0

into two dipoles of size vectors r and r− r0. Its rate (as the rapidity increases) is computed in
perturbative QCD and reads

dP
dy

= ᾱ
d2r
2π

r2
0

r2(r0− r)2 , (1.2)

where ᾱ = αsNc/π . This branching process is represented schematically in Fig. 1, together with
the shape of the dipole distribution obtained in a typical event.
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Figure 1: (a) Picture of the dressing of an onium of size r0 boosted to rapidity y = Y − y0 by gluonic
fluctuations, represented by dipoles in the large-Nc limit. Due to the collinear singularity in the splitting
probability, many small dipoles are produced. (b) Sketch of the number of dipoles n(r,y|r0) of size larger
than r in an onium of size r0 after evolution over the rapidity y in a typical event, when y� 1/ᾱ , as a function
of r (logarithmic scale on both axis). In the region r� r0, n follows the well-known double-logarithmic form

n ∼ exp
(

2
√

ᾱy lnr2
0/r2

)
, which is easy to prove for the mean dipole number n̄, but which is also true for

individual events provided the number of dipoles is large enough so that the law of large numbers applies.

Iterating the dipole branching process, we arrive at a random set of dipoles. Let us define
n(r,y|r0) the number of dipoles of size larger than r in an onium of size r0 at rapidity y. The density
of gluons in the onium carrying the fraction x of its momentum and having transverse momentum
k is related to the number of dipoles n in the following way [2]:

xG(x,k2) =
∂

∂y

∣∣∣∣
y=ln(1/x)

n(1/k,y|r0). (1.3)

Strictly speaking, this relation is established in the double-logarithmic approximation, and after
averages over the events have been taken. Again, we shall assume that it is actually valid for each
event.

Non-perturbative physics such as confinement cannot of course be captured by the original
color dipole model. Roughly speaking, confinement restricts the size of color dipoles to be less
than the typical hadronic size 1/ΛQCD. We shall model it by multiplying the dipole splitting rate
by the ad hoc cutoff function Θ:

dP
dy

∣∣∣∣
Eq. (1.2)

−→ dP
dy

= ᾱ
d2r
2π

r2
0

r2(r0− r)2 Θ(r,r0− r;RIR), (1.4)

chosen in such a way that Θ(r,r0− r;RIR) tends to zero when r� RIR or |r0− r| � RIR and to one
when both r and |r0− r| are much less than RIR.
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2. Probability distribution of the particle multiplicity

2.1 Analytical insights

Let us define Pn(r,y) the probability to have n dipoles of size larger than 1/Qs(y0) in the Fock
state at rapidity y. It is not difficult to write down a system of evolution equations for Pn:

∂Pn(r0,y)
∂y

= ᾱ

∫ d2r
2π

r2
0

r2(r0− r)2 Θ(r,r0−r;RIR)

[
n−1

∑
m=1

Pm(r,y)Pn−m(|r0− r|,y)−Pn(r0,y)

]
. (2.1)

This infinite set of equations may be summarized by writing the evolution equation for the gen-
erating functional of the factorial moments of Pn, which turns out to coincide with the Balitsky-
Kovchegov (BK) equation [4]. Hence, solving (2.1) is tantamount to solving the BK equation,
which so far has not been achieved.

The analytical and numerical study of the fluctuations of the number of dipoles was pioneered
in Ref. [6] in the context of the color dipole model without an infrared cutoff (i.e. for Θ = 1). In
this case, the probability Pn was found to exhibit a fat tail

Pn ∼
n�n̄

exp
(
− ln2 n

4ᾱy

)
. (2.2)

The large-multiplicity events are characterized by the presence of a large dipole, produced at the
very beginning of the QCD evolution. Its size may become arbitrarily large as one selects events
which have a larger and larger occupancy.

When confinement is accounted for, such large dipoles may not be produced. This results in a
drastic damping of the tail of the probability distribution, which becomes exponential:

Pn ∼
n�n̄

e−n/(cn̄), (2.3)

where n̄ is the mean dipole number (i.e. averaged over events) and c is a constant a priori of order 1,
but which we have not been able to determine analytically.

The detailed calculation which leads to Eq. (2.3) can be found in Ref. [2, 7]. Since it relies on
an Ansatz, numerical checks are required.

2.2 Numerical checks

We have implemented numerically the color dipole model in the form of a Monte Carlo event
generator along the lines of Ref. [8], but with a modified BFKL kernel which simulates the effect
of confinement through the cutoff function Θ. We present in Fig. 2 the numerical results for Pn for
the following choice of this function:

Θ(r1,r2;RIR) = exp
(
−r2

1 + r2
2

2R2
IR

)
, (2.4)

and setting the parameters to the values ᾱy = 3, QA = 50/r0, RIR = 2r0. (This Gaussian form was
part of the Ansatz in Ref. [2]). Figure 2 shows that the asymptotics (2.3) with a constant c in the
range 0.5 – 0.6 are fully consistent with the numerical calculations.

We are now aiming at investigating how the decay of Pn at large n depends on the infrared
sector, i.e. how confinement is enforced onto the perturbative QCD calculation. Preliminary results
seem to indicate that the dependence on the form of the cutoff function Θ is rather mild [7].
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Figure 2: Points: Numerical data for Pn for a particular cutoff function Θ and set of parameters (see the
main text for details). Full line: Graph of the function N/(cn̄)e−n/(cn̄)−dn̄/n, where the parameters N, c
and d are determined from the least square method (χ2/d.o. f . ' 38/41 when N ' 0.9, c ' 0.537 and
d ' 0.71). Note that we have added the arbitrary term −d× n̄/n in the exponent to effectively take into
account subasymptotic contributions which, so far, we have not been able to determine analytically. Dashed
line: Large-n asymptote.
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