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We discuss application of formalism of smalkffective action for reggeized gluons (Lipatov’s
effective action), [1, 2, 3], for the calculation of classigluon field of relativistic color charge.

The equations of motion with the reggeon fields are solveddrahd NLO approximations and
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strated that the CGC results for the classical field are cepred in our calculations.
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1. Introduction

In the framework of perturbative QCD, the calculations of classical fiedéited by a rela-
tivistic color charge is an important task. In the context of the Color Glassl@usate (CGC)
approach, the knowledge of solution of the equations of motion is an initialpstdr the further
smallx evolution of the gluonic system, see [4, 5]. The Balitsky, Fadin, Kuragatbv (BFKL)
like, [3], smallx behavior of the gluon density, a non-linear Gribov, Levin, Ryskin (Ge&)ation,
see [6] as well as Balitsky-Kovchegov (BK) like, [7], corrections to tthénisity were reproduced
in the framework of this approach. The effective action approach]pif2urn, can be considered
as some generalization of Gribov’'s Regge calculus, [1], for the caQ&arf degrees of freedom.
Besides the usual gluon field, it includes two additional reggeon fieldsaéhely used for the
calculations of different quasi-elastic LO and NLO production amplitudessimthlti-Regge kine-
matics, see [8], or calculation of NLO corrections to the BKP, [9], kerseg, [10].

In our calculations, we use the effective action for reggeized glugnising ideas of [2]. Us-
ing light-cone gauge, we consider a problem with only one longitudinal glethifi the equations
of motion included. With the two reggeon fields present in the approach r¢hedggeon field is
defined as a LO value of the corresponding gluon field, whereas tbadeeggeon field arises as
a source term in the Lagrangian.

2. Effective action for reggeized gluons with color field souwe

The effective action, see [2], is a non-linear gauge invariant actioohadorrectly reproduces
the production of the particles in direct channels at a quasi-multi-Reggm&ires:

SEff - —/d4X (iszva +tr [(A+(V+) - A+) jl%g + (A,(V,) - A,) jreg]) ’ (2-1)

where 1
A:t(Vi) = édiO(xi,vi) = ViO(Xi,Vi), (22)

with O(x*, v..) as some operators, see further. The form of reggeon current wéstéie follow-
ing:

fiega = SRy A A (2.3)
whereC(R) is the eigenvalue of Casimir operator in the representatio@(R) = N in the case
of adjoint representation used in the paper. There are additional kinaieticstraints for the
reggeon fields

J0_A  =0,A_ =0, (2.4)

corresponding to the strong-ordering Sudakov components in the mulieR@gematics, see [2].
We can rewrite Eq. (2.1) as

srr= - [atx (et s o) +va ). @5
with
I (V) = O(Vz) g, (2.6)
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Under variation on the gluon fields these currents reproduce the Lipataiced currents, see
Appendix:

5 (ved*(ve)) = (8ve) iM(vy) = (Sva) jF(va), (2.7)
which posseses a covariant conservation property:
. a
(D2 iM(vs))” = (D2 (va))* = 0. (2.8)

Here and further we denote the induced current in the component fdha adjoint representation
as 1
ja(ve) = —1tr[Taj*(ve)] = Str [0 KO ] (92A2). (2.9)

3. The LO solution and LO structure of the effective action

At the presence of an external source the solution of the equations ofmeainbe presented
in the form of the following ansatz for the gluon fields:

vo =0, vy =A[gA] + gNA[gA] + - v = Ay +gP[gA v ] + -, 0-AL = 0. (3.1)

The calculations give to LO accuracy:

Vat = Aat, (3.2)

see [2] and
W (X" x0) = U (AL) pei (X, x0) - (3.3)

Here the form ofJ function in Eq. (3.3) can be written consistently with the used in [5]:
W = tr [fPU e (Vi) FUc 0 (Vi) ] e (X x1) = Ui (X7x1) (3.4)

With U_g x+ = P e/ X V%, which correspond to the form of the induced current in the effective
action whenO operator is taken in the form of simple ordered exponential. The form dtithe

tion pci (X, X, ) is arbitrary in this case, it is proportional to the color charge density in th€ CG
approach. In the case of effective action for reggeized gluonappr we consider solution of
equations of motion as solution for the classical gluon field in the presen&e sburce, i.e. the
following substitution exists:

, 1
Gi0-py = —NafA;a (3.5)
or 1
ph = Ndjl (0'A%). (3.6)
Correspondingly, we obtain for Eq. (3.4):
_ 1 ab -1 b
V= U () (a, (&.A,)) . 3.7)

Inserting obtained classical gluon fields solutions in the Eq. (2.1) actionyilvebtain a action
which will depend only on the reggeon fields, see [2], determining the LD &tion of the
approach:

S = — [ d*x(slg Av A+ 090 ALA ]+ ). (3.9)
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With LO accuracy we have:

1
Serr=— [ d' ( (AAT) UPB(AL) (0-pio(x.)) + AL (O(AL) + N &) (deb)) 7
(3.9)
with O?P(A,) = Tr [faO(A+) fb] in adjoint representaion. This expression can be also rewritten
as

Sof = —It/d“x(((}.Ai) uab(a,) (aiAE) + A2 (oab(Ag + Naab) (afAE)). (3.10)

We obtained, that due the ordered exponential in the action, there areasidlitional corrections
which were not considered in [2]. However, obtained in expressior{(E#t0) corrections are not
complete, we also need the higher order solutions of equations of motion.

4. Conclusion

In this paper we consider application of the effective action approaatefgeized gluons to
the calculation of a classical gluon field produced by relativistic colorgghaile demonstrate, that
effective action for reggeized gluons can be obtained from QCD aatiben both reggeon fields
are introduced as non-zero LO solutions for the classical longitudinahdields and as sources
of each other. We also obtained, that LO expressions for the classical fields calculated in
the effective action formalism, reproduce results of CGC approachth&noesult of the paper, is
that we calculated classical gluon field in the presence of externaloadigdds to NLO accuracy
in the light-cone gauge, see [2]. We also note, that proposed formalisemyisnaportant for the
construction of QCD based RFT calculus.

Appendix A: Induced current in the effective action

In this Appendix we consider ajit component of the induced current which can be obtained
by variation of the current term in the effective action Eq. (2.1):

Jia(ve) = jM(vy) = %O(Vﬂ (97AT) O (vy). (A1)

The operator® andO" are introduced in [2]:
<_

O0=20, (D;*) ;0" = (D;') a9, (A.2)
and have the following properties:
9,0=gv,0,0'3, = —gO'v, (A.3)

see Appendix C further. The Eq. (A.1) form of the current is genéralparticular representations
of the current in terms of P-exponentials, in turn, depend on the rapegi®ms ofO operator,
or, more precisely on the representation of ﬂié operator. If we take the following simplest
representation

al+ F(x*) = /_Xm dx* (X, (A.4)
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we obtain for these operators:
O = pdufcd 2T, (A.5)

and /
O = pedht X ViTa, (A.6)

The variation of interaction term in the action can be calculated and resultslbbyad current
from Eq. (A.1):

, . : 1
O (AL(Vy)eg) = —1 (0VA) tr[Tajing(vi)] = (8VR) ja (vy) = N (3V2) tr[T.OT,O' | (02AY) .
(A.7)
with v, = 1T#V representation of the gluon field used. In the case of adjoint repréisehtae
will obtain:

5(AL (V1) g) = (8V2) [ (v.) = = (8R) [0 K0T (97A)) =  (512) U™ (32AY )
(A.8)

that provides
ja(vi =0) = —07AL. (A.9)

The U2 exponential in Eq. (A.8) is the same as used in QGC approach of [5]. GhéAss)-
Eqg. (A.6) forms of the operators can be modified in order to provide theresumitarity atx —
+o0. For that, the Eq. (A.4) operator can be modifiett as

—f (x) /dx € xJr X T ) f(xt), (A.10)

wheree (x+ — x/+> is a sign function, that corresponds to the symmetrical, in the sense of BJf. (A
Eqg. (A.6) expressions, ordered exponentials in the presentation opénator and principal value
prescription of regularization of correspondingl pole in momentum space, see details in [2].
In this case, more complicated expressions for the operators will be afbtaine
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