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We discuss application of formalism of small-x effective action for reggeized gluons (Lipatov’s

effective action), [1, 2, 3], for the calculation of classical gluon field of relativistic color charge.

The equations of motion with the reggeon fields are solved in LO and NLO approximations and

the LO results are compared to the calculations performed inthe CGC framework. It is demon-

strated that the CGC results for the classical field are reproduced in our calculations.
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1. Introduction

In the framework of perturbative QCD, the calculations of classical field created by a rela-
tivistic color charge is an important task. In the context of the Color Glass Condensate (CGC)
approach, the knowledge of solution of the equations of motion is an initial setup for the further
small-x evolution of the gluonic system, see [4, 5]. The Balitsky, Fadin, Kuraev, Lipatov (BFKL)
like, [3], small-x behavior of the gluon density, a non-linear Gribov, Levin, Ryskin (GLR)equation,
see [6] as well as Balitsky-Kovchegov (BK) like, [7], corrections to thisdensity were reproduced
in the framework of this approach. The effective action approach of [2], in turn, can be considered
as some generalization of Gribov’s Regge calculus, [1], for the case ofQCD degrees of freedom.
Besides the usual gluon field, it includes two additional reggeon fields andwidely used for the
calculations of different quasi-elastic LO and NLO production amplitudes in the multi-Regge kine-
matics, see [8], or calculation of NLO corrections to the BKP, [9], kernel,see [10].

In our calculations, we use the effective action for reggeized gluons exploring ideas of [2]. Us-
ing light-cone gauge, we consider a problem with only one longitudinal gluon field in the equations
of motion included. With the two reggeon fields present in the approach, the first reggeon field is
defined as a LO value of the corresponding gluon field, whereas the second reggeon field arises as
a source term in the Lagrangian.

2. Effective action for reggeized gluons with color field source

The effective action, see [2], is a non-linear gauge invariant action which correctly reproduces
the production of the particles in direct channels at a quasi-multi-Regge kinematics:

Se f f = −
∫

d4x

(

1
4

Ga
µν Gµν

a + tr
[

(A+(v+) − A+ ) j+reg + (A−(v−) − A− ) j−reg

]

)

, (2.1)

where
A±(v±) =

1
g

∂±O(x±,v±) = v±O(x±,v±) , (2.2)

with O(x±,v±) as some operators, see further. The form of reggeon current we take is the follow-
ing:

j±rega =
1

C(R)
∂ 2

i A±a , (2.3)

whereC(R) is the eigenvalue of Casimir operator in the representation R,C(R) = N in the case
of adjoint representation used in the paper. There are additional kinematical constraints for the
reggeon fields

∂−A+ = ∂+A− = 0, (2.4)

corresponding to the strong-ordering Sudakov components in the multi-Regge kinematics, see [2].
We can rewrite Eq. (2.1) as

Se f f = −
∫

d4x

(

1
4

Ga
µν Gµν

a + v− J−(v−) + v+ J+(v+)
)

, (2.5)

with
J±(v±) = O(v±) j±reg. (2.6)
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Under variation on the gluon fields these currents reproduce the Lipatov’s induced currents, see
Appendix:

δ
(

v± J±(v±)
)

= (δ v±) j ind
∓ (v±) = (δ v±) j±(v±) , (2.7)

which posseses a covariant conservation property:
(

D± j ind
∓ (v±)

)a
=

(

D± j±(v±)
)a

= 0. (2.8)

Here and further we denote the induced current in the component form inthe adjoint representation
as

j±a (v±) = − ı tr[Ta j±(v±)] =
1
N

tr
[

faO fbOT ]
(

∂ 2
i Ab
−

)

. (2.9)

3. The LO solution and LO structure of the effective action

At the presence of an external source the solution of the equations of motion can be presented
in the form of the following ansatz for the gluon fields:

v− = 0, v⊥ = Λ[gA+] + gΛ1[gA+] + · · · , v+ = A+ + gΦ[gA+,v⊥] + · · · , ∂−A+ = 0. (3.1)

The calculations give to LO accuracy:

va+ = Aa+ , (3.2)

see [2] and
vb

i

(

x+,x⊥
)

= Ubc (A+) ρci
(

x− ,x⊥
)

. (3.3)

Here the form ofUab function in Eq. (3.3) can be written consistently with the used in [5]:

vb
i = tr [ f bU−∞,x+ (v+) f cUx+,∞ (v+) ]ρci

(

x−,x⊥
)

= Ubcρci
(

x−,x⊥
)

, (3.4)

with U−∞,x+ = Peg
∫ x+
−∞ dx

′+va
+ , which correspond to the form of the induced current in the effective

action whenO operator is taken in the form of simple ordered exponential. The form of thefunc-
tion ρc i (x−,x⊥) is arbitrary in this case, it is proportional to the color charge density in the CGC
approach. In the case of effective action for reggeized gluons approach, we consider solution of
equations of motion as solution for the classical gluon field in the presence ofA− source, i.e. the
following substitution exists:

∂i ∂−ρ i
a = −

1
N

∂ 2
⊥A+

a , (3.5)

or
ρ i

a =
1
N

∂−1
−

(

∂ i Aa
−

)

. (3.6)

Correspondingly, we obtain for Eq. (3.4):

va
i =

1
N

Uab (v+)
(

∂−1
−

(

∂i A
b
−

))

. (3.7)

Inserting obtained classical gluon fields solutions in the Eq. (2.1) action, wewill obtain a action
which will depend only on the reggeon fields, see [2], determining the LO RFT action of the
approach:

Se f f = −
∫

d4x (s1[g, A+, A−] + gs2[g, A+, A−] + · · ·) . (3.8)
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With LO accuracy we have:

Se f f = −
∫

d4x

(

(

∂iA
a
+

)

Uab(A+) (∂−ρib(x⊥)) +
1
N

Aa
+

(

Oab(A+) + Nδ ab
) (

∂ 2
⊥Ab
−

)

)

,

(3.9)
with Oab(A+) = Tr

[

f aO(A+) f b
]

in adjoint representaion. This expression can be also rewritten
as

Se f f = −
1
N

∫

d4x
(

(

∂iA
a
+

)

Uab(A+)
(

∂i A
b
−

)

+ Aa
+

(

Oab(A+) + Nδ ab
) (

∂ 2
⊥Ab
−

))

. (3.10)

We obtained, that due the ordered exponential in the action, there are someadditional corrections
which were not considered in [2]. However, obtained in expression Eq. (3.10) corrections are not
complete, we also need the higher order solutions of equations of motion.

4. Conclusion

In this paper we consider application of the effective action approach for reggeized gluons to
the calculation of a classical gluon field produced by relativistic color charge. We demonstrate, that
effective action for reggeized gluons can be obtained from QCD action,when both reggeon fields
are introduced as non-zero LO solutions for the classical longitudinal gluon fields and as sources
of each other. We also obtained, that LO expressions for the classical gluon fields calculated in
the effective action formalism, reproduce results of CGC approach. Another result of the paper, is
that we calculated classical gluon field in the presence of external reggeon fields to NLO accuracy
in the light-cone gauge, see [2]. We also note, that proposed formalism is very important for the
construction of QCD based RFT calculus.

Appendix A: Induced current in the effective action

In this Appendix we consider anj+ component of the induced current which can be obtained
by variation of the current term in the effective action Eq. (2.1):

j+ind(v+) = j ind
− (v+) =

1
N

O(v+)
(

∂ 2
i A+

)

OT(v+) . (A.1)

The operatorsO andOT are introduced in [2]:

O = ∂+
(

D−1
+

)

; OT =
(

D−1
+

)←−∂ + , (A.2)

and have the following properties:

∂+O = gv+O , OT←−∂ + = −gOT v+ , (A.3)

see Appendix C further. The Eq. (A.1) form of the current is general,the particular representations
of the current in terms of P-exponentials, in turn, depend on the representations ofO operator,
or, more precisely on the representation of the∂−1

+ operator. If we take the following simplest
representation

1
∂+

f (x+) =
∫ x+

−∞
dx
′+ f (x

′+) , (A.4)
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we obtain for these operators:

O = Peıg
∫ x+
−∞ dx

′+va
+ Ta (A.5)

and

OT = Peıg
∫ ∞

x+ dx
′+va

+ Ta . (A.6)

The variation of interaction term in the action can be calculated and results by induced current
from Eq. (A.1):

δ
(

A+(v+) j+reg

)

= − ı
(

δva
+

)

tr[Ta j+ind(v+)] =
(

δva
+

)

j+a (v+) = −
1
N

(

δva
+

)

tr [TaOTbOT ]
(

∂ 2
i A+

b

)

,

(A.7)
with v+ = ıTava

+ representation of the gluon field used. In the case of adjoint representation1 we
will obtain:

δ
(

A+(v+) j+reg

)

=
(

δva
+

)

j+a (v+) =
1
N

(

δva
+

)

tr [ faO fbOT ]
(

∂ 2
i A+

b

)

=
1
N

(

δva
+

)

Uab (∂ 2
i A+

b

)

,

(A.8)
that provides

j+a (v+ = 0) = −∂ 2
i A+

a . (A.9)

TheUab exponential in Eq. (A.8) is the same as used in QGC approach of [5]. The Eq. (A.5)-
Eq. (A.6) forms of the operators can be modified in order to provide the action’s unitarity atx→
±∞. For that, the Eq. (A.4) operator can be modified as2:

1
∂+

f (x+) =
1
2

∫

dx
′+ ε

(

x+ − x
′+
)

f (x
′+) , (A.10)

whereε
(

x+ − x
′+
)

is a sign function, that corresponds to the symmetrical, in the sense of Eq. (A.5)-
Eq. (A.6) expressions, ordered exponentials in the presentation of the operator and principal value
prescription of regularization of corresponding 1/k+ pole in momentum space, see details in [2].
In this case, more complicated expressions for the operators will be obtained.
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