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TMD densities from the Parton branching method
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We present results from a Parton branching solution of the DGLAP equation at LO, NLO and
NNLO which is is capable to extract both the collinear part and the transverse momentum de-
pendent part of the parton densities. We demonstrate that within our method the collinear part of
parton densities exactly corresponds to the semi-analytical solution of the DGLAP equation up
to NNLO. Moreover, we study the transverse momentum of parton densities with respect to the
parton flavour, ordering condition used during the evolution and the intrinsic momentum.
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1. Introduction

We discus some aspects of the Parton branching evolution method recently developed in [1, 2].
This formalism can be compared with existing evolution equations working in the special part of the
phase space: CSS at low transverse momentum [3] and/or CCFM at high energy and low-x region
[4]. Our approach is rather general and we believe it can be further improved i.e. by transverse
splitting functions [5].

2. Method description

In our approach, we are using the evolution equation which deals separately with the resolvable
and non-resolvable branchings. Introducing the resolution parameter zm the emissions with z < zm

are considered as resolvable whereas the emissions with z > zm are resummed together with the
virtual terms. The variable z is the fraction of the light-cone momentum of the parton after the
branching with respect to the original one. The non-resolvable emissions and the virtual terms are
resummed using the Sudakov form factor which leads to the following evolution equation in scale
µ2 for the momentum weighted PDFs f̃a(x,µ2) = x fa(x,µ2):

d
d ln µ2

f̃a(x,µ2)

∆a(µ2)
= ∑

b

∫ zm

x

dz
z

zPab(µ
2,z)

f̃b(x/z,µ2)

∆a(µ2)
, (2.1)

where the Sudakov form factor ∆a(µ
2) is defined as:

∆a(µ
2) = exp

(
−
∫

µ2

µ2
0

dµ2

µ2 ∑
b

∫ zm

0
dzzPba(µ

2,z)

)
(2.2)

and can be interpreted as a probability that parton a does not undergo any resolvable branching
between the starting scale of the evolution µ2

0 and µ2. Note that in both equations (2.1), (2.2)
the upper limit for integration over z is zm < 1 which means that we do not include the possible
virtual part of the splitting functions Pab at z = 1. Moreover, it can be shown that such evolution
equation (2.1) automatically conserves unitarity irrespectively to the particular form of the splitting
functions which is a consequence of the Sudakov resummation of high-z branchings. That means
that if the total momentum fraction S carried by the proton

S(µ2) = ∑
a

∫ 1

0
dx f̃a(x,µ2) (2.3)

is at scale µ2
0 is S(µ2

0 ) = 1 then this relation also holds for evolved PDFs at higher scales.
In case that Pab corresponds to standard DGLAP splitting functions, it can be shown that also

the evolution (2.1) converges to the DGLAP equation

d f̃a(x,µ2)

dln µ2 = ∑
b

∫ 1

x

dz
z

zPab(µ
2,z) f̃b(x/z,µ2), (2.4)

if zm is large enough. On the other hand, the automatic unitarity conservation and non-necessity
to know the virtual terms of the splittings makes equation (2.1) a good candidate for possible
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extensions beyond standard DGLAP. In particular, we already tested the effect of scale dependent
resolution scale zm(µ

2) on the evolution. In future, we plan to extend the splittings for the CCFM
terms which are important in low-x limit.

The evolution equation (2.1) can be transformed to the integral equation of Volterra-type which
is a special case of the Fredholm-type integral equation where the resulting functions for a partic-
ular value of the scale (evolution variable) depend only on the functions at lower scales. There are
several possibilities how to solve such equations. Motivated by easy implementation and extensi-
bility and good control over the uncertainties we decided for Monte Carlo technique which employs
Markov chain of the branching to solve equation (2.1). Within this method the ∆a(µ

2
2 )/∆a(µ

2
1 ) is

employed as a non-branching probability between two consequent scales µ2
1 and µ2

2 and the split-
ting function integrated over z < zm represents the branching probability. The method is described
in more detail in [2].

This procedure is graphically explained in Fig. 1 where the equation (2.1) is solved by MC
method for two values of the resolution parameter zm. It can be seen, as expected, that the number
of branchings strongly depends on the zm value, for zm→ 1 the integral over z in the Sudakov factor
even goes to infinity. It is nicely visible that for zm = 1−10−6 there are more soft emissions with
z→ 1 (vertical lines) than for zm = 1−10−2. On the other hand, we tested that the obtained PDFs
for these two cases are nearly identical [2].

In [1, 2] we demonstrated that at LO and NLO these PDFs from Parton branching method are
within 1% identical with the semi-analytical solution of the DGLAP evolution as implemented in
QCDNUM [6]. Such precision was achieved with zm = 1− 10−3 and higher zm gives even better
agreement.
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Figure 1: The demonstration of the Parton branching method. For gluon evolving from starting position
µ =
√

2GeV, x = 1 towards higher scales. The branchings are represented by dots which are connected by
the straight lines. Here, 100 random evolutions have been performed which can be distinguished by different
colors. In plot on the left hand side the evolution is shown for zm = 1−10−2 whereas on the right hand plot
the evolution was performed for zm = 1−10−6. The thick black line represents mean trajectory.
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3. NNLO evolution

Since the implementation of the NNLO Parton branching evolution is not as straightforward
as in LO and NLO case, in this section, we will discuss the aspects which are special for NNLO. As
we work with massless quark flavours in variable flavour numbering scheme (VFNS) the number of
active flavours appearing in the splitting functions depends on evolutions scale N f =N f (µ

2). Below
charm productions threshold which we identify with charm mass mc there are 3 active flavours, for
scales between mc and mb there are 4 flavours and so on.

However, only the cross section defined as a convolution of perturbatively calculable coeffi-
cient functions and the PDFs is a physical observable and it is naturally assumed to be continuous
as a function of scale. Since the coefficient functions also include N f dependence it was shown
[7] that to compensate the discontinuities in coefficient functions at NNLO one needs to introduce
discontinuities both in αs and PDFs (left plot in Fig. 2) on the heavy quark production thresholds.
The physical cross section is then continuous function of the scale µ2.

These PDF discontinuities are given as:

∆g(x,m2
c) = α

2
s (m

+2
c ) [Agq ∗qs +Agg ∗g] (3.1)

∆qi(x,m2
c) = α

2
s (m

+2
c ) Aqq ∗qi (3.2)

∆c(x,m2
c) = α

2
s (m

+2
c )
[
Ahq ∗qs +Ahg ∗g

]
, (3.3)

where m+2
c is infinitely close to m2

c from above and e.g. ∆g(x,m2
c) = g(x,m+2

c )− g(x,m−2
c ). The

analogous equations with identical convolution kernels A also hold at thresholds corresponding
to the bottom mass mb and top mass mt . Note that these kernels with their virtual terms satisfy
momentum sum rule and, therefore, preserve the unitarity of the DGLAP equation (2.4).

To incorporate these heavy flavours thresholds effects into evolution (2.1), we consider the
kernels A as a part of our µ2-dependent splittings. Formally, we can write:

zPNNLO
ab

(
µ

2,z
)
= zPreg

ab (µ2,z)+ zAab(z)α2
s (m

+2
c )δ (log µ

2− logm2
c)+{bottom, top}, (3.4)

where the δ -functions, when integrated over µ2, result in discontinuities of the Sudakov factor on
the heavy quark thresholds (right plot in Fig. 2). Note, that although the both Preg

ab and Aab contain
virtual terms for z = 1 these terms are not used within our MC evolution which conserves unitary
by definition.

The procedure for the MC evolution is then the following. We pre-calculate the Sudakov
factor for gluon and quark, then in each step of the Markov chain we select the random number
r between 0 and 1. The new scale µ2

2 is chosen in such a way that ∆a(µ
2
2 )/∆a(µ

2
1 ) = r, where

µ2
1 is the original one. In case that the new scale µ2

2 is on the heavy flavour threshold we select
the particular branching type and z-value according to functions Aba instead of standard splitting
functions Preg

ba . Using such procedure the NNLO Parton branching solution is identical to the semi-
analytical DGLAP solution obtained by QCDNUM [6]. We demonstrate this consistency in Fig. 3,
the starting PDF parametrisation is given in [2].

4. Effect of intrinsic kT and the ordering condition

The main motivation for the Parton branching method is to have PDF dependent not only on
x but also on the transverse momentum kT for all parton flavours. During each branching in the
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Figure 2: The gluon distribution (left plot) evolved by NNLO DGLAP evolution equations. As the evolution
is done in VFNS the discontinuities appear on the heavy quark mass thresholds represented by the dotted
lines (mc = 1.70GeV, mb = 4.99GeV). The right plot shows the NNLO Sudakov factor for gluon which is
able to handle these discontinuities.
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Figure 3: The comparison of the gluon and up-quark PDFs obtained by parton branching method (binned
curves) and QCDNUM (smooth curves) at NNLO. The bottom frames show ratio with respect to QCDNUM

PDF value.

evolution we generate the transverse momentum qT of the parton and consequently estimate the
final kT value. The evolution scale µ2 can be identified either with virtuality or with the angle
which corresponds to the formulas:

q2
T = (1− z)Q2 def

== (1− z) µ
2, q2

T = (1− z)2
θ

2 def
== (1− z)2

µ
2 (4.1)

The angular ordering should include the color coherence effects between the emissions. Both of
these definitions are infrared save in such sense that they give qT = 0 when z→ 1 and, therefore, the
resulting kT spectrum is well defined in zm→ 1 limit. On the other hand the "naive qT ordering",
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where q2
T

def
== µ2 is not infrared save for zm→ 1 and the infrared emissions must be cut off explicitly

by introducing zm = zm(µ
2) 6→ 1. However, such type of cut-off affects the collinear evolution as

well.

The transverse momentum spectrum of parton densities evolved with angular and virtual-
ity ordering condition (4.1) are compared in Fig. 4. The starting (intrinsic) kT distribution of
transverse momentum dependent densities (TMDs) at scale µ2

0 = 2GeV2 was chosen as Gaussian
A(x,kT ,µ

2) ∼ exp(−k2
T/2) which is assumed to be identical for all flavours. The parametrisation

of the collinear part of A at the starting scale can be found in [2]. The normalisation of the TMDs
is such that ∫

∞

0

d2kT

π
A(x,kT ,µ

2) = f̃ (x,µ2). (4.2)
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Figure 4: The comparison of transverse momentum spectra for the virtuality and angular ordered evolution.

It can be seen that the ordering conditions differ mostly for high scales µ2 and low kT values
which is understandable as the starting kT distributions are identical so when evolved to higher
scales more differences are visible. The spectra differ at small kT since that is the region dominated
by soft emissions z→ 1 where the difference between the ordering conditions is most prominent.

Furthermore, it can be seen that the quark transverse momentum for virtuality and angular
ordering densities differ less than for the gluon one. This is because the quark emits less than
gluon, due to different color coefficients in front of the splitting, naively one expects a suppression
by CA/CF = 3/4

3 = 9
4 .

In Fig. 5 we study the effect of the intrinsic momentum of the non-perturbative nature imposed
at the beginning of the evolution. We see that the difference in kT distributions with and without
intrinsic kT at scales µ2 = 10GeV2 and µ2 = 1000GeV2 is quite small, affecting mainly up-quark
at small kT . It can be easily understood since at µ2

0 only the gluon and u, d, s quarks are presented.
As quarks radiate less the effect of the evolution is smaller and effect of the starting kT distribution
higher.
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Figure 5: The comparison of the transverse momentum spectra with and without an intrinsic kT included.
Angular ordering condition is used.

5. Conclusion

We have demonstrated some aspects of the Parton branching evolution method and have shown
that such formalism can be extended up to NNLO in such a way that the collinear part agrees with
the semi-analytical DGLAP solution when the same splitting functions are used and zm resolution
parameter is large enough. We showed that this method allows extracting the kT spectra for all
flavours and that the quark and gluon spectra differ in their average transverse momentum. In
addition, we focused on the effect of the ordering condition and intrinsic kT on the resulting kT

spectrum. The transverse momentum spectrum of parton densities can be tested experimentally
for example by the pT distribution of the Drell-Yann lepton pair or by pT spectrum of the Higgs
boson. The first LO and NLO predictions of the Drell-Yann pT spectrum obtained using TMDs
from the parton branching method were already calculated and will be shown in the future. For the
time being our TMDs are based on the corresponding collinear PDFs, dressed by the kT spectrum
during the evolution. The kT is not considered when calculating the quality of the fit. Nerveless
already the current approach allows, for example, to propagate the uncertainties of the collinear
PDFs into the kT spectrum.
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