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1. Introduction

The top quark, being the heaviest known fundamental particle, is particularly interesting to
study. For a start, it couples most strongly with the Higgs boson and as such is tightly connected
with the electroweak symmetry breaking of the SM. The larger energy scales now being probed at
the LHC may be able to shed new light on this sector or indeed spot deviations from SM predic-
tions. In particular, the study of so-called “boosted” top quarks1 may also be a fruitful avenue for
exploration with regards to hunting new physics effects. For example, for the pair invariant mass
(PIM) distributions CMS [1] has released measurements up to M = 2 TeV and ATLAS [2] up to
M = 3 TeV, where M is the top pair invariant mass. As such, despite contributing negligibly to the
total cross section these high energy tails are no longer merely a corner of phase space, but a region
for interesting phenomenological study given the large number of top quark pairs expected over the
lifetime of the LHC.

With this in mind, the need for accurate predictions from theory is important. Indeed, many
steps have already been taken. In particular, the NNLO predictions for differential distributions
were recently calculated in [3, 4, 5]. However the appearance of large logarithmic corrections
can plague a fixed order perturbative expansion. For example, in the boosted regime mentioned
earlier, logarithms of the ratio of the top mass to the PIM may not constitute small corrections to
the cross section. As such, these corrections should be resummed to all orders to yield a converging
perturbative expansion. Another potentially dangerous contribution to the cross section comes in
the form of threshold logarithms. Such logarithms are dynamically generated by the emission of
additional gluons into the final state and become increasingly divergent as the gluon energy tends
to zero.

In this talk we present predictions obtained from the combination of two resummed predic-
tions matched to NNLO fixed order results. Specifically, we present the formalism used for the
two resummed results as well as the procedure for combining the results and matching to NNLO.
Predictions for phenomenology are also presented for the PIM and top quark pT distributions. For
the PIM distribution we again assess the difference of the resulting predictions from two differ-
ent choices of factorisation scale. Results presented here explored in more detail in an upcoming
publication [6].

2. Formalism for Resummation from SCET

We begin this section by analysing the form of fixed order calculations and highlighting some
features mentioned in the introduction. The well known QCD factorisation theorem allows us to
write the differential cross section for the production of top quark pairs at the LHC as

d2σ

dM d cosθ
=

8πβt

3sM ∑
i j

∫ 1

τ

dz
z

Li j (τ/z,µ f )Ci j(z,M,mt ,cosθ ,µ f ) . (2.1)

Here we have presented the differential cross section with respect to the top-pair invariant mass
M and the scattering angle θ . s and ŝ denote the hadronic and partonic centre of mass energies

1Boosted, in this context, refers to the region of phase space where the top pair has a greater invariant mass than the
top quark mass itself.
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squared respectively. The sum is over initial state partons i and j. We have also introduced the
variables βt =

√
1−4m2

t /M2, τ = M2/s, and z = M2/ŝ. The hard-scattering kernels Ci j are related
to the partonic cross section and can be calculated using standard perturbative techniques while Li j

denotes the parton luminosity and is itself a convolution of the parton distribution functions (PDFs)
of the two incoming hadrons.

In calculating perturbative corrections from QCD to the hard-scattering kernels one typically
encounters logarithms of the ratios of the different scales characterising the process. The first
contributions we consider are plus distributions of the form

α
n
s

[
lnp(1− z)

1− z

]
+

, 0≤ p≤ 2n−1 , (2.2)

where n denotes the n-th order correction to the cross section (the born process begining at α2
s ).

These distributions become divergent as z→ 1, the limit in which almost all of the incoming par-
tonic energy is in the final state top pair and the phase space for additional gluon emission is highly
restricted. As such, we associate these large logarithms with the emission of soft gluons. In addi-
tion to regular threshold logarithms, we also wish to consider logarithms of the form lnn(m2

t /M2).
One might expect such logarithms to become increasingly important as the top-pair invariant mass
becomes much larger than the top quark mass itself, i.e. the regime in which the top quarks become
highly boosted. We make use of two factorisation theorems which allow the simultaneous resum-
mation of these contributions to all orders in perturbation theory [7, 8]. Both are derived within the
Soft Collinear Effective Theory (SCET) framework. The factorisation theorems allow a separation
of the scales involved into separate component functions.

The first of these factorisation theorems [7] is derived in the threshold limit z→ 1. The hard
scattering kernel factorises as

CSoft
i j = Tr[Hm

i j(M,mt ,µ f , ..)Sm
i j(
√

ŝ(1− z),mt ,µ f , ...)]+O(1− z) . (2.3)

Here Hm
i j and Sm

i j are the hard and soft functions respectively with the indices i j labelling the par-
tonic channels. The hard and soft functions are matrices in the space of possible colour structures.
We see clearly the separation of scales, the hard function with dependence on M, while the soft
function depends on

√
ŝ(1− z), and as such contains contributions singular as z→ 1. It is worth

pointing out that in this soft limit, it is also possible to obtain the transverse momentum (pT ) distri-
bution of the top quark using a simple change of variables. This is possible because the top quarks
will be produced back-to-back in the centre of mass frame as soft emissions will not alter their
kinematics.

The second factorisation theorem, relevant when M� mt , is given by [8]

CBoosted
i j =C2

D(mt ,µ f )Tr
[
Hi j(M,µ f , ..)Si j(

√
ŝ(1− z),µ f , ...)

]
⊗ sD (mt(1− z),µ f )

⊗ sD (mt(1− z),µ f )⊗ ct
i j(z,mt ,µ f )+O(1− z)+O (mt/M) ,

(2.4)

where the symbol ⊗ denotes a convolution. This factorisation theorem builds on that in Eq. (2.3)
and as such is valid to leading power in the limits z→ 1 and mt/M→ 0. Here, the hard and soft
functions are now independent of the top mass mt and we have introduced new functions CD and
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sD which are related to the perturbative heavy-quark fragmentation function. The heavy flavour
matching coefficients ct

i j arise from the presence of heavy quark loops and in general introduces
additional dependence on ln(mt). We add these contributions in to the resummed result in fixed
order only. Eq. (2.4) thus separate the two hard scales M and mt from each other, and from the soft
scales

√
ŝ(1− z) and mt(1− z). Eqs. (2.3) and (2.4) give the starting point for obtaining resummed

results. In the original derivation of these, the resummed result was obtained directly in momentum
space. However in this instance we choose to work in Mellin space. In Mellin space, convolutions
of functions become simple products. The Mellin transformation and its inverse are given by

f̃ (N) =
∫ 1

0
dx xN−1 f (x) , f (x) =

1
2πi

∫ c+i∞

c−i∞
dN x−N ˜f (N) . (2.5)

In the inverse transform c is chosen such that it lies to the right of all singularities in the integrand.
In Mellin space, the z→ 1 limit corresponds to N → ∞ and our scale separation from the two
factorisation formulas is given as

Mellin-space soft limit: ŝ,m2
t �

ŝ
N2 , (2.6)

Mellin-space boosted soft limit: ŝ� m2
t �

ŝ
N2 �

m2
t

N2 . (2.7)

Deriving and solving the RG equations for each of the matching functions in Eqs. (2.3) and (2.4)
we arrive at the resummed form for the hard scattering kernels. In Mellin space, we write these as

c̃Soft
i j (N,µ f ) = Tr

[
Ũm

i j(N̄,µ f ,µh,µs)Hm
i j(µh) Ũm†

i j (N̄,µ f ,µh,µs)̃sm
i j

(
ln

M2

N̄2µ2
s
,µs

)]

+O

(
1
N

)
(2.8)

and

c̃Boosted
i j (N,µ f ) = Tr

[
Ũi j(N̄,µ f ,µh,µs)Hi j(µh) Ũ†

i j(N̄,µ f ,µh,µs)̃si j

(
ln

M2

N̄2µ2
s
,µs

)]

× Ũ2
D(N̄,µ f ,µdh,µds)C2

D(mt ,µdh) s̃2
D

(
ln

mt

N̄µds
,µds

)
+O

(
1
N

)
+O

(mt

M

)
. (2.9)

for the threshold resummed and small mass plus threshold resummed results respectively. Here we
have removed all dependence of the matching and evolution functions on M,mt and cosθ . The
evolution functions Um, U and UD arise from the solutions of the RG equations for each of the
matching functions. The massive hard and soft functions can be found to one loop in [7] meaning
we can perform threshold resummation to NNLL accuracy. The massless hard and soft functions
are known to two loops [9, 10] however. In addition, the functions CD and sD were also extracted
to NNLO in [8]. Including these two loop matching functions in the boosted soft resummed result
yields a resummation accuracy of NNLL′ which incorporates a single extra logarithm at each order
in perturbation theory compared to NNLL.
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The matching functions H(m), S(m), CD and sD can now each be evaluated at their own scales
(µh, µs, µdh and µds respectively) where they are free of large logarithmic corrections. The differ-
ence is accounted for via the evolution functions which resum logarithmic contributions involved
when running each function to a common scale µ f . In order to free each matching function of large
logarithms, we adopt µh = M, µs = M/N̄, µdh = mt and µds = mt/N̄ as our canonical default scale
choices2. The factorization scale µ f will be correlated with the distribution under consideration
and will be specified in each case.

In order to obtain results in momentum space it is necessary to perform the inverse Mellin
transform in Eq. (2.5). However, because the soft scales µs and µds are chosen directly in Mellin
space, the inverse transform encounters a pole for large N related to the running of αs. We employ
the minimal prescription [11] in order to deal with this. This amounts to choosing the intersection
of the contour with the real axis (c in Eq. (2.5)) to lie to the right of all singularities in the integrand
except that arising from the Landau pole at large N.

3. Matching with NNLO Calculations

So far we have presented two resummed formulas, Eqs (2.8) and (2.9) valid in the soft and
boosted soft limits respectively. We would like to combine the predictions obtained from these
resummed calculations and additionally match the results to fixed order at NNLO. In this way, we
can utilise the full power of the resummation formulas as well as account for corrections subleading
in the threshold limit to NNLO. However, we must ensure we do not double count contributions
which are common to the fixed order results and the resummed ones. Combining all the results
together yields an accuracy denoted NNLO+NNLL′ and is achieved through

dσ
NNLO+NNLL′ = dσ

NNLL′b +

(
dσ

NNLLm− dσ
NNLLb

∣∣µds=µs
µdh=µh

)
+

(
dσ

NNLO− dσ
NNLL′b+m

∣∣∣ NNLO
Expansion

)
.

(3.1)

The notation dσNNLL′b denotes predictions obtained using the hard scattering kernel in the boosted
soft limit as in Eq. (2.9) at NNLL′ accuracy and similarly dσNNLLm denotes predictions in the
threshold limit using Eq. (2.8) to NNLL accuracy. The first line of Eq. (3.1) combines the results
from the two resummed predictions. Specifically, the term in brackets on the first line accounts for
contributions subleading in the limit mt/M → 0 which are missed in the boosted soft resummed
result but appear in the threshold resummed result. Setting the scales in the matching functions CD

and sD equal to the µh and µs respectively has the effect of undoing the scale separation between
the two hard scales M and mt and soft scales

√
ŝ(1−z) and mt(1−z) returning simply the threshold

resummed result in the massless limit. This is exactly the contribution double counted when adding
on the threshold resummed result and is the origin of the subtraction in the first line. The second
line matches the resummed result to NNLO and is simply given by expanding the first line to
NNLO and subtracting these contributions out from the exact NNLO contribution, again to avoid
double counting such contributions. The NNLO expansion of the joint resummation on the top line

2Here the notation N̄ = NeγE is used to tidy notation.
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is a little subtle and an expanded discussion will be available in [6]. However it is worth pointing
out that since the matching functions in the threshold resummed result are only known to NLO,
the expansion of dσNNLLm to NNLO leaves dependence on the matching scales µh and µs in fixed
order. The same is true for dσNNLLb (but not dσNNLL′b where the matching functions are included
up to NNLO accuracy).

4. Numerical Results

 (
pb

/G
eV

)
tt

/d
M

σd

4−10

3−10

2−10

1−10

1
NNLO+NNLL'

NNLO

)=0.118
Z

(MsαNNPDF30: 

LHC 13 TeV

tt
 = (1/4,1/2,1) M
f

µ

 (GeV)ttM
500 1000 1500 2000 2500 3000 3500

R
at

io

0.8
1.0
1.2
1.4
1.6

 (
pb

/G
eV

)
tt

/d
M

σd
4−10

3−10

2−10

1−10

1

NNLO+NNLL'

NNLO

)=0.118
Z

(MsαNNPDF30: 

LHC 13 TeV

T
 = (1/8,1/4,1/2) H
f

µ

 (GeV)ttM
500 1000 1500 2000 2500 3000 3500

R
at

io

0.7
0.8
0.9
1.0
1.1

Figure 1: Pair invariant mass distributions obtained using µ f = M/2 (left) and µ f = HT/4 (right). Each
plot shows predictions from NNLO (red) and NNLO+NNLL′ (blue hatched). The lower panel in each plot
displays the ratio of the results, normalised to the NNLO prediction.

We now present results obtained from the matching formula in Eq. (3.1). Throughout we use
the NNPDF3.0 PDF sets with αs(MZ) = 0.118 [12] and set mt = 173.3 GeV. Uncertainties are
calculated varying each of the scales (µ f , µh, µs, µdh and µds) independently by a factor of two
up and down, keeping the others fixed and comining the results in quadrature. For the NNLO
results we keep µ f = µR at all times. Figure 1 displays predictions for the PIM distributions using
two different choices of factorisation scale. In each case we compare the fixed order NNLO and
resummed NNLO+NNLL′ predictions. The plot on the left shows results obtained using µ f =M/2.
We notice the effect of the resummed result (blue) is to enhance the cross section compared to
the fixed order result, particularly in the higher energy bins. In [5] however, it was found that
µ f = HT/4 was a particularly appropriate scale choice in fixed order. We show predictions using
this choice of scale on the right hand plot. Here, the resummed result is softer in the tail than its
fixed order counterpart. In order to better compare these results we display in Figure 2 the ratios
of the fixed order results at the two different scale choices (left) and the corresponding ratios for
the resummed results (right). In both cases results are normalised to those with the scale choice
µ f = HT/4. We see that while the fixed order predictions displays a strong dependence on the
choice of factorisation scale, the resummed results are generally more stable under such changes.

In Figure 3 we display predictions for the top quark pT distribution using the scale choice
µ f = mT/2. Here we see the resummation has only a limited impact on the resulting pT distribu-

5



P
o
S
(
D
I
S
2
0
1
7
)
1
3
2

Resummation for Top Quark Pair Production at the LHC Darren J. Scott

 (GeV)ttM
500 1000 1500 2000 2500 3000 3500 4000

/4
)

T
=

H
fµ

)/
N

N
LO

(
fµ

N
N

LO
(

0.5

0.6

0.7

0.8

0.9

1.0
1.1

1.2

/4T=H
f

µ
/2tt=M

f
µ

)=0.118
Z

(MsαNNPDF30: NNLO 
LHC 13 TeV

 (GeV)ttM
500 1000 1500 2000 2500 3000 3500 4000

/4
)

T
=

H
fµ

N
N

LO
+

N
N

LL
'(

) fµ
N

N
LO

+
N

N
LL

'(

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

/4T=H
f

µ
/2tt=M

f
µ

)=0.118
Z

(MsαNNPDF30: NNLO 
LHC 13 TeV

Figure 2: Predictions for the PIM distribution from NNLO fixed order (left) and NNLO+NNLL′ (right) with
the scale choices µ f = HT/4 (blue hatched) and µ f = M/2 (red). Results are normalised to the prediction
obtained from using µ f = HT/4.
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Figure 3: Predictions for the top quark pT distribution at NNLO (red) and NNLO+NNLL′ (blue hatched)
accuracy. In the lower panel the ratio between the two predictions is taken, normalised to the NNLO result.
Predictions are obtained with µ f = mT/2.

tion. There is a slight softening of the central value, however both predictions lie well within the
uncertainty band of each other.

As the experimental uncertainties in the high energy tails of distributions become smaller,
the need for ever more accurate theory predictions will grow. We have taken some steps in this
direction here, supplementing the fixed order NNLO calculations with resummed results.

References

[1] CMS Collaboration [CMS Collaboration], CMS-PAS-TOP-16-008.

[2] The ATLAS collaboration [ATLAS Collaboration], ATLAS-CONF-2016-100.

[3] M. Czakon, D. Heymes and A. Mitov, Phys. Rev. Lett. 116, no. 8, 082003 (2016)
doi:10.1103/PhysRevLett.116.082003 [arXiv:1511.00549 [hep-ph]].

6



P
o
S
(
D
I
S
2
0
1
7
)
1
3
2

Resummation for Top Quark Pair Production at the LHC Darren J. Scott

[4] M. Czakon, P. Fiedler, D. Heymes and A. Mitov, JHEP 1605, 034 (2016)
doi:10.1007/JHEP05(2016)034 [arXiv:1601.05375 [hep-ph]].

[5] M. Czakon, D. Heymes and A. Mitov, JHEP 1704, 071 (2017) doi:10.1007/JHEP04(2017)071
[arXiv:1606.03350 [hep-ph]].

[6] M. Czakon, A. Ferroglia, D. Heymes, A. Mitov, B. Pecjak, D. Scott, X. Wang and L. Yang,
In preparation

[7] V. Ahrens, A. Ferroglia, M. Neubert, B. D. Pecjak and L. L. Yang, JHEP 1009, 097 (2010)
doi:10.1007/JHEP09(2010)097 [arXiv:1003.5827 [hep-ph]].

[8] A. Ferroglia, B. D. Pecjak and L. L. Yang, Phys. Rev. D 86, 034010 (2012)
doi:10.1103/PhysRevD.86.034010 [arXiv:1205.3662 [hep-ph]].

[9] A. Broggio, A. Ferroglia, B. D. Pecjak and Z. Zhang, JHEP 1412, 005 (2014)
doi:10.1007/JHEP12(2014)005 [arXiv:1409.5294 [hep-ph]].

[10] A. Ferroglia, B. D. Pecjak, L. L. Yang, B. D. Pecjak and L. L. Yang, JHEP 1210, 180 (2012)
doi:10.1007/JHEP10(2012)180 [arXiv:1207.4798 [hep-ph]].

[11] S. Catani, M. L. Mangano, P. Nason and L. Trentadue, Nucl. Phys. B 478, 273 (1996)
doi:10.1016/0550-3213(96)00399-9 [hep-ph/9604351].

[12] R. D. Ball et al. [NNPDF Collaboration], JHEP 1504, 040 (2015) doi:10.1007/JHEP04(2015)040
[arXiv:1410.8849 [hep-ph]].

7


