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Recently, a measurement of the vector-boson scattering process with same-sign W bosons has
been reported by the CMS collaboration. Hence it is of prime importance to have precise pre-
dictions with next-to-leading order (NLO) accuracy. In these proceedings, we report on a recent
NLO electroweak computation to the full process pp→ µ+νµ e+νejj. As realistic experimental
event selections are applied to the final state, it can directly be compared with experimental mea-
surements. This is particularly important as the corrections turn out to be surprisingly large and
even exceed the NLO QCD corrections. The NLO electroweak predictions are presented at the
cross-section and differential distribution level.
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1. Introduction

During run I of the Large Hadron Collider (LHC), evidence for the existence of the vector-
boson scattering (VBS) process with two positively charged W bosons has been found [1, 2, 3].
For run II, the CMS collaboration has already reported a measurement [4]. Precise and appropriate
predictions for this process are thus very relevant. In this context precise means next-to-leading
order (NLO) accurate and appropriate means that the simulations are done with realistic exper-
imental cuts. This implies that the NLO QCD corrections but also the electroweak (EW) ones
should be considered. The former are already available [5, 6, 7, 8, 9] while the latter have been
computed only recently [10] and are reported in these proceedings. The NLO EW corrections
are unusually large for EW corrections at the LHC, and even exceed the NLO QCD corrections
[11]. The calculation presented here contains all possible off-shell and non-resonant effects as it
describes the full pp→ µ+νµe+νejj process. We consider the leading order (LO) at order O

(
α6

)
,

while the NLO EW corrections are defined at order O
(
α7

)
. Finally, realistic experimental cuts are

applied, allowing for a direct comparison with the experimental measurements.

2. Event selection

The predictions presented here are for the LHC running at the center-of-mass energy of 13TeV.
The input parameters can be found in Ref. [10]. The event selection is adopted to the one used
in experiments to single out the VBS process over its irreducible background [1, 2, 3, 4]. To
recombine the photons with charged particles, the anti-kT algorithm [12] with R = 0.1 is used.
The experimental signature of the process is characterised by two leptons of positive charge, two
QCD jets, and missing transverse energy. Each charged lepton and jet has to fulfil the following
requirements for their transverse momentum and rapidity:

pT,` > 20GeV, |y`|< 2.5, ∆R`` > 0.3, (2.1)

pT,j > 30GeV, |yj|< 4.5, ∆Rj` > 0.3. (2.2)

In addition, the missing transverse energy has to be larger than 40GeV. For the pair of jets, the
typical VBS event selections are applied. These comprise an invariant-mass cut and a cut on the
difference of the rapidities,

Mjj > 500GeV, |∆yjj|> 2.5. (2.3)

3. Numerical results

The numerical results have been obtained from two different private Monte Carlo programs
which have been used to compute NLO QCD and EW corrections to high-multiplicity processes. To
evaluate all tree and one-loop amplitudes, the computer code RECOLA [13, 14] and the COLLIER

library [15, 16] have been used. The infrared singularities are handled via the Catani–Seymour
dipole subtraction formalism [17, 18]. To treat unstable particles, we rely on the the complex-mass
scheme [19, 20]. Finally, regarding the electromagnetic coupling, the Gµ scheme [21] is utilised.

The numerical results obtained are particularly interesting. As it can be seen from Table 1, the
EW corrections are already large for the fiducial cross section. They reach−16% and thus are even
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σLO [fb] σNLO
EW [fb] δEW [%]

1.5348(2) 1.2895(6) −16.0

Table 1: Fiducial cross sections at LO and NLO EW accuracy for pp→ µ+νµ e+νejj expressed in femtobarn.
The digit in parenthesis represents the integration error. The relative EW corrections δEW are given in per
cent.

larger than the QCD ones [11]. This is surprising as usually the EW corrections are mainly driven
by EW Sudakov logarithms that grow negatively large only in the tail of the distributions (which
are themselves suppressed).
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Figure 1: Differential distributions for pp→ µ+νµ e+νejj including NLO EW corrections (upper panels)
and relative NLO EW corrections (lower panels): dijet invariant-mass distribution (top left), invariant-mass
distribution of the positron–anti-muon system (top right), transverse-momentum distribution of the hardest
jet (bottom left), and rapidity distribution of the leading jet pair (bottom right).

The effects of Sudakov logarithms are clearly visible in the distributions in the invariant
mass (both for the two charged leptons and the two jets) and in the distribution in the transverse-
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momentum of the hardest jet.1 These are shown in Fig. 1, where the LO and NLO EW predictions
are displayed (upper panels) as well as the relative EW corrections (lower panels) in per cent.
The corrections reach −40% for the transverse momentum of the leading jet at 800GeV. For the
distribution in the rapidity of the two jets, the EW corrections are large for the typical VBS config-
uration where the two jets are back to back (corresponding to small yj1j2). When going away from
this configuration (larger yj1j2) the magnitude of the corrections decreases.

The origin of the large EW corrections has been identified in Ref. [10]. These are driven by
the bosonic part of the virtual contributions. Studying W+W+→W+W+ scattering in a leading-
logarithmic approximation [22] gives a very good estimate of the corrections. The obtained formula
depends only on the EW Casimir operator and the scale of the process. It explains why the cor-
rections are 3-4 times bigger than for qq̄→W+W+. Indeed, the Casimir operators are larger for
vector bosons than for fermions and the scale Q = 〈m4`〉 ∼ 390GeV entering the Sudakov loga-
rithm log

(
Q2/M2

W
)

is also larger as the scattering features a massive t-channel exchange. This
reveals that the large EW corrections observed are an intrinsic feature of the VBS process at the
LHC.

4. Conclusion

In these proceedings, the off-shell computation at NLO EW accuracy of the VBS for two
same-sign W bosons has been presented [10]. Besides being a theoretical and numerical challenge,
it also constitutes a relevant piece of information for the experimental collaborations in their quest
to measure VBS processes precisely. Indeed, the calculation features all non-resonant and off-shell
effects with a realistic final state. In addition, typical experimental event selections are applied
which allows one to compare these predictions directly to the experimental measurements. The
fact that these corrections are large (even larger than the QCD ones [11]) renders them even more
relevant for the experimental analysis.
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