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Double parton scattering (DPS) describes two colliding hadrons having interactions in the form

of two hard processes, each initiated by a separate pair of partons. Just as for single parton scat-

tering, the resummation of soft gluon exchange gives rise to a soft function, which is a necessary

ingredient for obtaining rapidity evolution equations. For various regions of phase space, we

derive the rapidity evolution and the scale evolution of double transverse momentum dependent

parton distribution functions (DTMDs) as well as of the pT -resummed cross section for double

Drell-Yan like processes. This contributes to a framework that can be used for phenomenological

DPS studies including resummation.
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1. Introduction

In double parton scattering (DPS), firstly described in the Refs. [1, 2], two hard partonic pro-

cesses take place in a single hadron-hadron collision and it is as such relevant for the LHC [3, 4].

Just as for single parton scattering (SPS), one needs parton distribution functions (PDFs) for de-

scribing the nonperturbative dynamics in the initial state. Specifically, one needs double PDFs

(DPDFs) and double transverse momentum dependent PDFs (DTMDs). In Fig. 1 the relevant mo-

mentum and configuration space variables that are required to describe DTMDs are illustrated.

Not only does one need the positions zzz1 and zzz2, the distance yyy between the two hard processes in

configuration space has to be introduced as well.

In these proceedings, we limit ourselves to color singlet production processes such as double

Drell-Yan or the production of two Higgs bosons. There are different regions of phase-space that

have to be taken into consideration. We treat all of them, see also [5], but here we focus on

perturbative |zzz1|, |zzz2| ≪ |yyy|, with yyy fixed. This implies that we are looking at two perturbative hard

partonic interactions that are separated from each other in configuration space [5, 6].

We generalize the resummation formalism for the single Drell-Yan process in Ref. [7] to dou-

ble Drell-Yan. In particular, we focus on the rapidity and energy scale evolution equations and their

solutions. For SPS, the procedure for TMD evolution is known [8]. We show how these results can

be generalized for the double color singlet production in DPS, see also [5, 6]. On top, we also give

the matching equations for DTMD/DPDF matching.

2. Evolution

Just as for single Drell-Yan like processes, describing cross sections and DTMDs in DPS in-

volves the handling of a soft function, albeit a more complicated one, since it involves two partonic

processes simultaneously. Since the energy scale evolution is related to the soft function through

the rapidity evolution kernel K, we need to ensure a proper handling of the soft function in order

to get a well-defined starting point for the evolution equations. In these proceedings we will give

the results for the soft function and refer to [5] for details. For other literature see e.g. Ref. [9] for

a general discussion and Ref. [10] for the DPS soft factor at two loops.

It is necessary to make a few remarks about the color structure first. For SPS, Drell-Yan only

has one possible color structure for the two partons in the t-channel, namely a color singlet. For

DPS, the situation is more involved, since there are more ways to connect the four initial state

(t-channel) parton lines to (s-channel) color singlet final states [11]. Therefore, for a DPS situation

Figure 1: Illustration of the momenta ki and r as well as the impact parameter space variables zi and y (blue

color online) that are involved in double parton scattering.
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involving (anti)quarks only, we have a color singlet and octet configuration, whereas for gluons (or

mixed states) the situation becomes even more complicated. As such, we introduce the parameters

R and R′ to label the color configuration. In DPS we need two such parameters due to having two

partonic processes.

In the short distance expansion it can then be proven [5] that the soft function for DPS factor-

izes as

RR′
Sa1a2

(zzz1,zzz2,yyy) =
RCs,a1

(zzz1)
RCs,a2

(zzz2)
RRS(yyy)δRR′ , (2.1)

implying that the soft function can be factorized in zzz1, zzz2 and yyy dependent parts. Furthermore, the

soft function is diagonal in the color representations R and R′. Given the above form of the soft

function, it can be shown that the corresponding rapidity evolution kernel K is given by

RR′
Ka1a2

(zzzi,yyy; µi) = δRR′

[

RKa1
(zzz1; µ1)+

RKa2
(zzz2; µ2)+

RJ(yyy; µi)
]

, (2.2)

where the additive structure of the different parts is a consequence of the factorized form of the soft

function in Eq. 2.1. In the above equation and all further occurrences, µi is a shorthand notation to

indicate both µ1 and µ2, which are the renormalization scales for the partons 1 and 2. We similarly

use the shorthand notation xi and zzzi.

The evolution in the rapidity scale parameter ζ is given by

∂

∂ log ζ
RFa1a2

(xi,zzzi,yyy,µi,ζ ) =
1

2
∑
R′

RR′
Ka1a2

(zzzi,yyy; µi)
R′

Fa1a2
(xi,zzzi,yyy; µi,ζ ) , (2.3)

with the evolution kernel given in Eq. 2.2. In this equation, the DTMD has absorbed the soft func-

tion S. The evolution kernel K contains a µ-dependence that has to be understood before writing

down the full energy scale evolution equations. See for example Chapter 6 of [5] or Section 3 of

[6] for a detailed discussion hereof. Solving the differential equation in Eq. 2.3 gives us

RFa1a2
(xi,zzzi,yyy; µi,ζ ) =∑

R′

RR′
exp

[

Ka1a2
(zzzi,yyy; µi) log

√

ζ
√

ζ0

]

R′
Fa1a2

(xi,zzzi,yyy; µi,ζ0) , (2.4)

where the object RR′
exp is a matrix exponential defined through

RR′
exp(M) = δRR′ + RR′

M+
∞

∑
n=0

∑
R2,...,Rn

RR2M · · ·RnR′
M

n!
. (2.5)

The aforementioned energy evolution of DTMDs is governed by

∂

∂ log µ1

RFa1a2
(xi,zzzi,yyy; µi,ζ ) = γF,a1

(µ1,x1ζ/x2)
RFa1a2

(xi,zzzi,yyy; µi,ζ ) (2.6)

for µ1 and through a similar expression for µ2. In the above, the γF,a1
(µ1,x1ζ/x2) is the same

anomalous dimension that appears in the evolution of single TMDs as well. For a consistent

description, the ζ -argument has to be multiplied by either x1/x2 or x2/x1, depending on which

partonic process is described. Solving for both the energy scales µ1 and µ2 then gives

RFa1a2
(xi,zzzi,yyy; µi,ζ ) =

RFa1a2
(xi,zzzi,yyy; µ0i,ζ )

2
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× exp

[

∫ µ1

µ01

dµ

µ
γF,a1

(µ ,x1ζ/x2)+

∫ µ2

µ02

dµ

µ
γF,a2

(µ ,x2ζ/x1)

]

, (2.7)

doubling the SPS results. This was to be expected, since the µ evolution comes from hard loops

associated with only one of the two partons, resulting in two independent contributions to the so-

lution of the evolution equations.

Combining the results in the Eqs. 2.4 and 2.7, we get the combined solution

RFa1a2
(xi,zzzi,yyy; µi,ζ ) = exp

{

∫ µ1

µ01

dµ

µ

[

γF,a1
(µ ,µ2)− γK,a1

(µ) log

√

x1ζ/x2

µ

]

+

∫ µ2

µ02

dµ

µ

[

γF,a2
(µ ,µ2)− γK,a2

(µ) log

√

x2ζ/x1

µ

]

+
[

RKa1
(zzz1,µ01)+

RKa2
(zzz2,µ02)+

RJ(yyy,µ0i)
]

log

√

ζ
√

ζ0

}

× RFa1a2
(xi,zzzi,yyy; µ0i,ζ0) , (2.8)

where both the rapidity and evolution scale evolution have been taken into account. In this, the ζ0,

µ01 and µ02 are the starting scales of the three evolution parameters. The presence of the anomalous

dimensions γk is a consequence of the µ-dependence of the evolution kernel RR′
Ka1a2

(zzzi,yyy; µi) in

Eq. 2.3. It satisfies

γK,a(µ) =
RγK,a(µ)+

RγJ(µ), (2.9)

with RγK,a(µ) and RγJ(µ) given by

∂

∂ log µ1

RKa(zzz; µ1) =−RγK,a(µ1), (2.10)

∂

∂ log µ1

RJ(yyy; µi) =−R γJ(µ1) (2.11)

and similar expressions for the derivative with respect to µ2.

3. Short distance matching

Matching equations describe how the transverse momentum dependent and collinear DPDFs

are related to each other by means of a convolution of the latter with a matching coefficient. In this

section we describe the matching for short distances, with perturbative |zzz1|, |zzz2| ≪ |yyy|, in which yyy

is fixed. For the DTMD/DPDF matching the relation is given by [5]

RFa1a2
(xi,zzzi,yyy; µi,ζ ) = ∑

b1b2

RCa1b1
(x′1,zzz1; µ1,µ

2
1 )⊗

x1

RCa2b2
(x′2,zzz2; µ2,µ

2
2 )⊗

x2

RFb1b2
(x′i,yyy; µi,ζ ),

(3.1)

where the convolution between two functions A and B is given by

A(x′)⊗
x

B(x′) =
∫ 1

x

dx′

x′
A(x′)B

(

x

x′

)

. (3.2)
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As can be seen, the matching consists of a convolution with two coefficient functions. These can

largely be recycled from SPS. In Ref. [5] we have recalculated all coefficients at NLO level that

were known in literature before [8, 12, 13, 14]. We furthermore calculated the previously unknown

Cδgδg(x,zzz), Cgδg(x,zzz) and Cqδg(x,zzz) at the same accuracy, which have not been calculated before

since they do not contribute for SPS. In these coefficients δg indicates linear gluon polarization.

The next step is to combine the evolution equations with the matching, giving rise to the

combined evolution and matching equations. For the DTMDs, this gives us

RFa1a2
(xi,zzzi,yyy; µi,ζ )

= exp

{

∫ µ1

µ01

dµ

µ

[

γF,a1
(µ ,µ2)− γK,a1

(µ) log

√

x1ζ/x2

µ

]

+ RKa1
(zzz1; µ01) log

√

x1ζ/x2

µ01

+
∫ µ2

µ02

dµ

µ

[

γF,a2
(µ ,µ2)− γK,a2

(µ) log

√

x2ζ/x1

µ

]

+ RKa2
(zzz2; µ02) log

√

x2ζ/x1

µ02

+ RJ(yyy; µ0i) log

√

ζ
√

ζ0

}

× ∑
b1b2

RCa1b1
(x′1,zzz1; µ01,µ

2
01)⊗

x1

RCa2b2
(x′2,zzz2; µ02,µ

2
02)⊗

x2

RFb1b2
(x′i,yyy; µ0i,ζ0) . (3.3)

Such an equation can be established at the cross section level as well, where the product of two

DTMDs appears in the form

Wlarge yyy = ∑
R

ηa1a2
(R)exp

{

∫ µ1

µ01

dµ

µ

[

γF,a1
(µ ,µ2)− γK,a1

(µ) log
Q2

1

µ2

]

+ RKa1
(zzz1; µ01) log

Q2
1

µ2
01

+
∫ µ2

µ02

dµ

µ

[

γF,a2
(µ ,µ2)− γK,a2

(µ) log
Q2

2

µ2

]

+ RKa2
(zzz2; µ02) log

Q2
2

µ2
02

}

× ∑
c1c2d1d2

RCb1d1
(x̄′1,zzz1; µ01,µ

2
01)⊗

x̄1

RCb2d2
(x̄′2,zzz2; µ02,µ

2
02)

⊗
x̄2

RCa1c1
(x′1,zzz1; µ01,µ

2
01)⊗

x1

RCa2c2
(x′2,zzz2; µ02,µ

2
02)

⊗
x2

[

Φ(νyyy)
]2

exp

[

RJ(yyy; µ0i) log
Q1Q2

ζ0

]

RFd1d2
(x̄i,yyy; µ0i,ζ0)

RFc1c2
(xi,yyy; µ0i,ζ0) , (3.4)

where ηa1a2
(R) is a sign factor explained in detail in [5]. At the level of the cross section, there are

four coefficient functions, two for each DPDF. In the above equation, Φ(νyyy) is a function needed

to regulate ultraviolet divergences [15].

It is important to stress that in the equation for the cross section no rapidity parameters ζ ’s

are present anymore, since they can be traded for the energy scales Q2
1 and Q2

2 through the relation

ζζ = Q2
1Q2

2. An important difference with the single TMD/PDF matching is the presence of an

additional Sudakov suppression exp
[

RJ(yyy; µ0i) log Q1Q2

ζ0

]

. In the color singlet channel (R = 1), we

have 1J = 0 and this term disappears.

4. Discussions and conclusions

In these proceedings we have looked at double parton scattering (DPS). Using an approach

where both the partonic processes are in the perturbative regime and well separated from each

4
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other in configuration space, we have given the soft function and evolution equation for DPS, both

of which derived in [5]. We then proceeded to give the evolution equations for both the rapidity and

energy scale evolution of DTMDs, the solutions of which we combined into an equation describ-

ing the evolution with respect to both rapidity and energy scales. Although certain aspects of the

solutions are equivalent to doubling the SPS results, there are further contributions in the DPS situ-

ation, since an additional yyy-dependent Sudakov suppression for the color non-singlet configuration

appears. A determination of the size of such suppressions will be the topic of future work.

Subsequently, we have looked at the DTMD/DPDF matching equations. The DTMDs are

related to the DPDFs by a matching with two coefficient functions, one for each parton. These

coefficients can largely be recycled from SPS literature [8, 12, 13, 14], although a few coefficients

are new, since they are not needed for SPS. Therefore, Ref. [5] is the first place where Cδgδg(x,zzz),

Cgδg(x,zzz) and Cqδg(x,zzz) will be given. Combining the matching equations with the solutions of the

evolution equations, we have obtained expressions for combined matching/evolution of DTMDs

and a corresponding expression for the pT -resummed cross section.
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