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We propose a Bayesian parameter inference approach to determine Parton Distribution Functions
(PDFs) and we show that we can replace the standard χ2 minimisation used in most existing PDF
global analysis procedures, by Markov chain Monte Carlo (MCMC) techniques. These methods,
widely used in statistics, lead to reliable estimates of uncertainties in terms of confidence limit
intervals of probability distributions, and offer additional insight into the rich field of PDFs. The
formulation of PDF determination in terms of Bayesian inference, the Monte Carlo algorithm
we have implemented in the xFitter code and a selection of first results we have obtained are
presented in this contribution.
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1. Introduction and motivation

Parton Distribution Functions (PDFs) are fundamental ingredients of QCD, and with the ad-
vent of the Large Hadron Collider – powerful QCD factory operating in an unexplored energy
range, the need to determine PDFs and to assess their associated uncertainties as precisely as possi-
ble has become crucial. Except neural network techniques, most existing procedures to assess PDF
uncertainties rely on a minimisation procedure and on the choice of a tolerance criteria to define the
permissible range of "acceptable" ∆χ2 one has to explore around the minimal χ2 [1]. Uncertainties
estimated this way thus lose their statistical meaning. To define the uncertainties in a way based
as much as possible on robust statistical methods, we propose to use Bayesian parameter inference
and Markov chain Monte Carlo (MCMC) techniques, which have been an extremely popular tool in
statistics. These methods allow to estimate a posteriori probability densities for multi-dimensional
models and provides reliable estimates of errors.

In the next section of this paper, we show how to formulate the PDF determination problem in
terms of Bayesian inference. We then recall in the third section basic principles of Markov chain
Monte Carlo methods, explain which algorithm we have chosen to implement and why, and briefly
sketches the procedure to extract relevant informations from Markov chains. Section 4 present
some preliminary results.

2. Formulation of the PDF determination in terms of Bayesian inference

Parton Distribution Function determination in the context of global analysis consists in exten-
sively exploitating of datasets collected at colliders to constrain the parameters of the PDF func-
tional forms given at a fixed scale in energy. For compactness, let us note q̂ the vector of PDF
parameters to be determined: q̂ = (q(1),q(2), . . . ,q(m))T where m is typically, in the case of a full
analysis, of the order of 25-30, and D the data. From a Bayesian perspective, both model parameters
q̂ and observables are considered random quantities, and Bayesian inference aims at the determi-
nation of the distribution of the parameters q̂ conditional on the data D : P(q̂|D). This so-called
posterior probability density, which quantifies the probability to have the model parameters q̂ given
the observed data D, is expressed by Bayes theorem in terms of the likelihood P(D|q̂) def

= L (D, q̂)
by :

P(q̂|D) =
L (D, q̂)P(q̂)∫
dq̂L (D, q̂)P(q̂)

(2.1)

where P(q̂) is a prior distribution, quantifying the degree of belief one has a priori before observing
the data and the denominator can be considered only as a normalization.

To determine this conditional probability, we thus need to set a prior distribution for the pa-
rameters, and to compute the likelihood of the data. The probability density P(q̂|D) is then sampled
using a Monte Carlo algorithm.

Using the fact that the least square method and the maximum likelihood should be equivalent
in the case of normally distributed data, we construct the likelihood of the data in the same way
the χ2 is defined, and we identify logL (D, q̂) =−1

2 χ2. In the feasibility study we present, the χ2

does not include any correlation, but more generally, correlated experimental uncertainties can be
taken into account by introducing for instance a covariant matrix and properly modifying the χ2.
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3. Markov chain Monte Carlo in a nutshell

MCMC algorithms enable us to draw samples from a probability distribution known up to a
multiplicative constant, and consist in sequentially simulating a single Markov chain whose limit-
ing distribution is the chosen one (in our case, the maximum likelihood times a prior density). Basic
ingredients of MCMC are illustrated in the following section using the Metropolis algorithm.

3.1 Basic principles of Markov chains and Metropolis algorithm

Two ingredients are necessary to define a Markov chain: (i) the initial values (that is the
marginal distribution) of parameters and (ii) the transition kernel between two sets of parameters:
T (q̂ −→ q̂′), for going from a set q̂ to another set q̂′. The standard computational workhorse of
MCMC methods is the so called "Metropolis-Hastings algorithm", proposed in 1953 by Metropolis
et al. and generalized by Hastings in 1970 [2]. It can be applied in principle to any system and is
extremely straightforward to implement. It proceeds as follows: at each Monte Carlo time t− 1,
the next state q̂t is chosen by sampling a candidate point q̂′ from a proposal distribution π(.|q̂t−1).
The candidate point is then accepted with the probability

α(q̂t−1, q̂′) = min
(

1,
P(q̂′|D)π(q̂t−1|q̂′)

P(q̂t−1|D)π(q̂′|q̂t−1)

)
and the Metropolis-Hastings transition kernel is thus

T (q̂t−1 −→ q̂′) = π(q̂′|q̂t−1)α(q̂t−1, q̂′).

If the new set of parameters q̂′ is accepted, the next state of the chain becomes q̂t = q̂′. If it is
rejected, the chain does not move and the point at t is identical to the point at t − 1: q̂t = q̂t−1.
The main drawback of this algorithm is the fact that the autocorrelations become large and the
acceptance very tiny as the dimension of the parameter space to explore increases. For realistic PDF
determination, where the number of parameters can be of the order of a several dozens, Metropolis
algorithm – even improved by techniques like multivariate Gaussian distributions, binary space
partitioning . . . – is inefficient. This is the reason why we have implemented a much more elegant
algorithm, based on Molecular Dynamics, which has initially been developed for Lattice QCD and
is widely used in this field.

3.2 Hybrid Monte Carlo algorithm

Hamiltonian (or "hybrid") dynamics [3], developed originally for lattice field theory, is used
to produce candidate proposals for Metropolis algorithm, in a very elegant and efficient way. It is
an exact algorithm which combines molecular dynamics evolution with a Metropolis accept/reject
step, which is used to correct for discretization errors in the numerical integration of the corre-
sponding equations of motion.

Hybrid Monte Carlo consists in associating to each set of parameters q̂ (see previous section)
a set of conjugate momenta p̂ and to replace the a posteriori probability density (2.1) we want to
sample by the joint distribution defined as

P(q̂, p̂) =
1
Z

e−H(q̂,p̂) =
1
Z

e−K (p̂)e−U (q̂)
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where Z is a normalizing constant and H(q̂, p̂) is an hamiltonian written as H(q̂, p̂) = K (p̂)+
U (q̂). The first term has the form of a kinetic energy K (p̂) = p̂T M−1 p̂/2, where M is a mass
matrix (generally taken to be diagonal) and U (q̂) is an arbitrary potential energy, that we define as
U (q̂) =− log[L (D, q̂)P(q̂)].

Starting from a point q̂0 of the chain, the HMC procedure consists in selecting some ini-
tial momenta p̂0 normally distributed around zero and let the system evolve deterministically for
some time according to Hamilton’s equations of motion for H(q̂, p̂). It reaches a candidate point
(q̂1, p̂1) which, according to Metropolis procedure described above, is accepted with probability
min(1,e−∆H). Since the dynamics conserves energy, i.e. ∆H = 0 along a trajectory, the acceptance
rate is 100%, independently of the dimension of the vector q̂. Even though in practice, the accep-
tance is degraded because of the numerical resolution of Hamilton equations, it can be kept very
high (typically of the order of 70-90%), independently of the dimension of the chain, that is of the
number of parameters to determine. More details about this algorithm can be found in many very
good reviews and papers and we refer the reader for instance to [4] and references therein.

3.3 Markov chain analysis

Extracting observables and assessing their statistical errors in Monte Carlo simulations is far
from begin a trivial task and it requires a careful treatment of the Markov chain. We will only
briefly sketch in what follows, the procedure we have used; more details and results can be found
in [5].

Among all the subtleties of Markov chain analysis, two points in particular deserve special
care: the determination of the thermalization region and the estimation of the autocorrelation time.

The thermalization time of a Markov chain corresponds to a number of states to be discarded
from the beginning so that the chain forgets its starting point; we have estimated it on a criteria
based on the median value of the target distribution P(q̂|D).

To estimate the autocorrelation time, we have used either the Γ-method [6], which consists in
explicitly determining autocorrelation functions and the autocorrelation time τint , or a subsampling
consisting in rejecting all states which are closer than 2τint to each other, in order to get independent
states. We estimated errors on the uncorrelated measurements obtained with this latter method, by
the Jackknife binning procedure [7]. We have checked that both methods give coherent results.

We present in the next section a selection of preliminary results obtained after skipping ther-
malization and properly taking into account the autocorrelation. More results can be found in [5].

4. Preliminary results

We have implemented the Hybrid Monte Carlo algorithm in the open-source package Her-
aFitter and its successor xFitter [8]. We use for the PDF parametrization, the HERAPDF func-
tional form, that we just recall here for the sake of clarity: the parametrized HERA PDFs are the
valence distribution xuval and xdval , the gluon distribution xg, and the U and D distribution de-
fined as xU = xu, xD = xd + xs. Their functional form at the initial scale Q0 = 1.9 GeV2 reads
x fa(x) = Aa xBa (1− x)Ca (1+Dax+Eax2) where a labels a parton (g, uval , dval , . . . . See [8] for
more details).

3



P
o
S
(
D
I
S
2
0
1
7
)
2
1
3

MCMC applied to Parton Distribution Functions determination Mariane Mangin-Brinet

The results shown in this section are obtained from 36 Monte Carlo chains – each starting from
a different random point – using the HERAPDF functional forms at a scale Q0 = 1.9 GeV2 with
10 free parameters: Bg, Cg, Buval , Cuval , Euval , Cdval , CU , AD, BD and CD (see [8] for more details).
We have used uniform priors for the parameters, and we consider the same data ensembles than the
ones used to produce HERAPDF1.0 distributions, with the exception of the heavy flavor scheme,
which is in our case the ZMVFN scheme. All chains are thermalized and decorrelated according
to the procedure mentioned in the previous section and detailed in [5].

To extract parton distribution functions from the Markov chain, we compute, from the set of
10 parameters obtained at each Monte Carlo iteration, the corresponding PDFs for a range of x and
Q2 values. This provides the marginal probability density functions of PDFs at fixed (x,Q2), as
illustrated on Figure 1 for the gluon, for two different x values.
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Figure 1: Gluon PDF probability distribution function for x ≈ 10−4 (l.h.s.) and x ≈ 0.83 (r.h.s.) at fixed
Q2 = 10 GeV2. The 68% confidence interval is obtained from this distribution, considering the region of the
distribution containing 68% of the data remaining on each side of the best fit value.

For each (x,Q2), we determine the α%-confidence interval around the best fit value of the
PDF (with typically α = 68 or α = 95) by considering the region of the distribution on each side
of the best fit, and taking α% of the data on each of these regions.

MCMC PDFs are found to be, as expected, very close to the HERAPDF1.0 PDFs (in ZMVFN
scheme), both in central value and in confidence interval. Maximum likelihood estimator and least
square method are indeed equivalent under Gaussian assumption, which in the case of HERA-
PDF1.0 settings, can be reasonably applied. Experimental uncertainties – normalized by the best
fit value – obtained for HERAPDF1.0 and MCMC respectively by the Hessian and MCMC meth-
ods are compared in Fig. 2 for the uval and the gluon distributions. They are consistent within the
kinematic range of HERA, even if MCMC uncertainties tend to be slightly larger than the standard
deviations obtained in the Hessian approach. These results validate our implementation of MCMC
in xFitter and pave the way for a more complete PDF determination by MCMC techniques.

5. Conclusion and outlook

We have shown that Bayesian parameter inference approach applied to global PDFs analysis
can lead to a deeper insight into PDFs uncertainties. The innovative procedure we have imple-
mented, which combines Monte Carlo techniques, lattice-developed algorithms and global PDFs
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Figure 2: Comparison of the PDF uncertainties, normalized by the best fit value, as determined by the
Hessian and MCMC methods at NLO for the valence distribution xuval and the gluon distribution xg, at a
scale Q2 = 10 GeV2.

analysis is complementary to the existing methods. Our goal is to extend the present work to the
full ensemble of PDF free parameters, including also as parameters, the strong coupling constant
and c and b quark masses. We will consider more complex χ2 functions including correlation and
complete our analysis on a fully realistic case, studying in particular the impact of priors. No doubt
that Markov Chain Monte Carlo methods will give interesting and valuable informations on PDFs
and will contributed to our deeper understanding of these key elements of QCD.
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