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1. Introduction

Among other Quantum Chromodynamics(QCD) based frameworks, TMD factorization [1]
and Color Glass Condensate(CGC) effective theory [2] are two of the most powerful theoretical
tools to explore the internal structure of nucleon and of nuclei. The information on nucleon in-
ternal structure is encoded in the universal nonperturbative parts, i.e. TMD parton distributions
and the Wilson lines which enter into the cross section formulas computed in TMD factorization
and CGC framework, respectively. During the past few decades, two frameworks are more or less
parallelly developed, and apply in the different kinematical regions. The validation of TMD factor-
ization requires the existence of an additional hard scale Q2 that is much larger than parton intrinsic
transverse momentum k2

⊥ in a hard scattering process, while CGC can be employed in the region
where hard scale Q2 is much smaller than the center mass energy S. Apparently, there could exist
an overlap kinematical region k2

⊥¿ Q2 ¿ S where both approaches can apply.
In recent years, a lot of efforts have been made to work out a unified method to describe

physics in such overlap region by combining TMD factorization and CGC effective theory. As a
formulation in the leading power approximation, it is not legitimate to use TMD factorization as a
starting point to compute physical observables at small x since multiple rescattering is significantly
enhanced by very high gluon number density. Instead, one should carry out calculations in the
CGC formalism first, and then Talyor expand impact factor in terms of the power k2

⊥
Q2 to isolate

the leading power contribution. The first nonvanishing term of the Taylor expansion was shown
to be identical to the hard coefficients computed in TMD approach, while the derivative of Wilson
lines with respect to transverse coordinates can be related to gluon TMD matrix elements [3]. This
procedure later was generalized to the polarization dependent cases [4] and finite Nc case [4, 5]. In
this way, the application of TMD factorization in small x region is justified at tree level. Beyond
tree level, the formalism dealing with the joint TMD evolution and small x evolution developed in
Refs. [6, 7, 8] will be reviewed in Sec.IV.

With the establishment of TMD factorization at small x, one can explore novel polarization
dependent effects at small x in terms of TMD parton distributions. The information on gluon TMDs
inside an unpolarized or transversely polarized nucleon/nuclei(with ST being nucleon transverse
spin vector) is formally encoded in the following matrix element,

Γµν [U,U ′] =
1

xP+

∫ dy−d2yT

(2π)3 eik·y〈P,ST |2Tr
[
F+ν

T (0)UF+µ
T (y)U ′

]
|P,ST 〉

∣∣
y+=0, (1.1)

where U and U ′ are process dependent gauge links in the fundamental representation. At leading
power, this correlator can be parameterized by six independent tensor structures [9],

Γµν = δ µν
T f g

1 −
(

2kµ
T kν

T

k2
T

+δ µν
T

)
h⊥g

1 −δ µν
T

εT αβ kα
T Sβ

T

M
f⊥g
1T

−iεµν
T

kT ·ST

M
gg

1T −
k̃{µ

T Sν}
T + S̃{µ

T kν}
T

2M
hg

1T +
k̃{µ

T kν}
T

k2
T

kT ·ST

M
h⊥g

1T , (1.2)

where TMDs are functions of x and k2
T ≡−k2

⊥. The short hand notation k̃ν
T = εµν

T kT µ is used.
The first two gluon TMDs, f g

1 and h⊥g
1 , are the unpolarized and linearly polarized gluon dis-

tribution, respectively. Among the four transverse spin dependent gluon TMDs, the three T-odd
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gluon TMDs, f⊥g
1T , h⊥g

1T and hg
1T , are relevant for the transverse single spin asymmetry studies. All

of these TMDs contain process dependent gauge links. The two most important cases are the the
Weizsäcker-Williams (WW) distribution involving only single future or past pointing staple-like
gauge links, denoted by Γ[+,+†] or Γ[−,−†], and the dipole type distribution involving a closed loop
gauge link Γ[+,−†] or Γ[−,+†], respectively.

2. Small x gluon TMDs inside an unpolarized target

Parton TMDs at large kT À ΛQCD are perturbatively calculable. Generally speaking, a T-even
TMD with different gauge link structure possess the same perturbative tail at large k⊥. The con-
tributions from gauge link only become relevant at low transverse momentum k⊥ ∼ ΛQCD in the
dilute region. At small x, a new semi-hard scale, so-called the saturation momentum is dynamically
generated due to the high number density of gluons. This provides us an unique chance to study
how transverse momentum spectrum is affected by different gauge links in a kinematical window,
namely the dense medium region ΛQCD ¿ k⊥ ∼ Qs, where gauge link contributions become sig-
nificant while TMDs still can be computed using the perturbative method.

The most notable example is two widely used unpolarized gluon TMDs: the dipole type gluon
distribution GDP(x,k⊥) and the WW type gluon distribution GWW (x,k⊥). Both of the distributions
can be computed in the MV model,

xGWW (x,k⊥) =
N2

c −1
Nc

πR2
0

4π4αs

∫
d2r⊥ e−ik⊥·r⊥ 1

r2
⊥

(
1− e−

r2
⊥Q2

sg
4

)
, (2.1)

xGDP(x,k⊥) = Nck2
⊥

πR2
0

2π2αs

∫ d2r⊥
(2π)2 eik⊥·r⊥e−

1
4 r2
⊥Q2

s (2.2)

where Qsg = CA
CF

Qs is the gluon saturation momentum. For k⊥À Qsg, as expected the perturbative
tail is recovered from the both distributions: xGWW (x,k⊥) = xGDP(x,k⊥) ∝ 1

k2
⊥

. In contrast, for

ΛQCD ¿ k⊥¿ Qs, they behave quiet differently: xGWW (x,k⊥) ∝ ln Q2
sg

k2
⊥

,xGDP(x,k⊥) ∝ k2
⊥

Q2
s
e−k2

⊥/Q2
s .

Following the standard procedure, one also can compute both the dipole type and the WW
type linearly polarized gluon distributions in the MV model [10],

xh⊥g
1,WW (x,k⊥) =

N2
c −1
8π3 πR2

0

∫
d|r⊥|K2(|k⊥||r⊥|)

1
4µA
|r⊥|Q2

sg

(
1− e−

r2
⊥Q2

sg
4

)
. (2.3)

xh⊥g
1,DP(x,k⊥) = xGDP(x,k⊥) (2.4)

where K2 is the second order Bessel function. From the above expressions, one finds that at large
transverse momentum k⊥ÀQsg, the polarized WW type gluon distribution saturates the positivity
limit, xh⊥g

1,WW (x,k⊥) = xGWW (x,k⊥) ∝ 1
k2
⊥

, while at low transverse momentum ΛQCD ¿ k⊥¿ Qs,

the linear polarization of gluons is suppressed in the WW case: h⊥g
1,WW /GWW ¿ 1.

The dipole type linearly polarized gluon TMD computed in the MV model always saturates
the positivity bound at any k⊥. However, after taking into account TMD evolution, the effect of
linear gluon polarization is strongly suppressed as shown in Fig.1 [11]. Despite the strong Sudakov
suppression, the cos2φ asymmetry generated by h⊥g

1,DP is still sizeable at RHIC energy, and may
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allow to test kT -resummation formalism at small x and the theoretical expectation that the CGC
state is in fact polarized. More phenomenological studies on linear gluon polarization can be found
in Refs. [12, 13, 14, 15].

Figure 1: The linearly polarization of gluons at different scales for the dipole case.

3. Small x gluon TMDs inside a transversely polarized target

All of three T-odd gluon TMDs, f⊥g
1T , h⊥g

1T and hg
1T responsible for transverse spin asymmetries

can be computed in collinear factorization at large k⊥. Due to the twist-3 nature of transverse spin
asymmetry phenomenon, they receive leading contribution at twist-3 level. The hard coefficients
entering in these expressions are usually different for different gauge links appearing in the gluon
matrix element given in Eq. (1.1). For the dipole case, in the small x limit, one has [16],

f⊥g
1T,DP ≈ hg

1T,DP ≈ h⊥g
1T,DP ≈

M
k4

T

1
x

∫ 1

x
dz

{
C2 ∑

q−q̄
TF,q(z,z)+C1T (−)

G (z,z)

}
(3.1)

where TF,q, T (−)
G are the Qiu-Sterman quark gluon correlation function and the C-odd tri-gluon

correlation respectively. As for the WW case, all leading 1/x contribution cancel out between
different twist-3 pieces. This result motivates us to come up with a small x formalism treatment for
these dipole type T-odd gluon TMDs. In the small x limit one can relate the TMD matrix element
by partial integration to a close loop Wilson line U [¤](0T ,yT ). The imaginary part of the Wilson
loop gives rise to the T-odd part of gluon TMD matrix which can be cast into the form,

Γµν
T−odd(x,kT ;ST ) =

kµ
T kν

T
g2V xP+

∫ d2yT

(2π)3 eikT ·yT 〈P,ST |Tr
[
U [¤](0T ,yT )−U [¤]†(0T ,yT )

]
|P,ST 〉, (3.2)

When parameterizing the above tensor structure, we get only one spin dependent term [17],

Γµν
T−odd(x,kT ;ST ) =

kµ
T kν

T Nc

2π2αsx
εαβ

T ST αkT β

M
O⊥

1T (x,k2
T ), (3.3)
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where O⊥
1T (x,k2

T ) is identified as a spin dependent odderon in [17]. By equalling two parametriza-
tion, one derives [16],

x f⊥g
1T = xhg

1T = xh⊥g
1T =

−k2
T Nc

4π2αs
O⊥

1T (x,k2
T ) , (3.4)

We have now obtained a consistent picture at small x involving only one independent TMD, deter-
mined by the spin-dependent odderon. This universal distribution should govern the single trans-
verse spin asymmetries in p↑p and p↑A scattering at RHIC in the small-x regime. This description
differs from SSA involving the spin-independent odderon [18]. Note that the above analysis later
was extended to the spin one nucleon case [19].

The expectation value of the spin-dependent odderon has been evaluated using the McLerran-
Venugopalan (MV) model[17] and the diquark model [20]. The key observation from model calcu-
lations is that the spin dependent odderon is dynamically generated through the asymmetrical color
source distribution in the transverse plane of transversely polarized nucleon. More theoretical and
phenomenological studies on SSAs at small x can be found in Refs. [21, 22, 23].

4. The evolution of small x gluon TMDs

Whenever there are widely different scales involved in a hard scattering process, large loga-
rithm terms which need to be resummed to all orders in a systemical way, will show up in high
order calculations. It has been confirmed by an explicit one loop cross section calculation [6]
that the large logarithms ln S

Q2 and ln Q2

k2
⊥

simultaneously arise in the overlap region k2
⊥¿ Q2 ¿ S

where both CGC and TMD approach can apply. Provided that the large logarithm terms appear in
the same pattern at even higher order(beyond one loop), they can be resummed by means of the
Collins-Soper evolution equation and the BK equation, respectively. The relative size of two type
large logarithms is solely determined by the kinematics of a physical process.

An alternative way of doing resummation is to study the evolution of gluon TMD matrix
elements. To this end, we computed NLO correction to gluon TMD in a simple quark model using
the Ji-Ma-Yuan scheme [7]. As expected, the resulted gluon TMD contains both the Collins-Soper
type large logarithm and the logarithm ln 1

x , and satisfies the Collins-Soper equation and the BFKL
equation at the same time.

The calculation also can be formulated in a more formal way. We computed gluon TMDs in
CGC framework with the Collins-2011 scheme, and express them in terms of the Wilson lines. Both
large logarithm terms arise in corresponding hard coefficients [8]. We first remove ln 1

x logarithm by
replacing the bare Wilson lines with the renormalized ones whose rapidity dependence is controlled
by the BK equation. The large k⊥ logarithm is further resummed into the Sudakov factor using the
Collins-Soper equation. This procedure essentially follows the spirit of the effective theory by
noticing that small x physics and TMD physics actually live at different scales.

5. Summary

In summary, a unified method combing CGC framework and TMD factorization has been
established. While employing powerful saturation physics formalism and TMD approach to polar-
ization effects at small x has already produced fruitful results, we believe that there is much more
left to explore in the future study from both theoretical and experimental sides.
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