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Generalized TMDs (GTMDs) of hadrons are the most general two-parton correlation functions.
Upon certain projections, several GTMDs reduce to generalized parton distributions (GPDs) and
transverse momentum dependent parton distributions (TMDs), respectively. Therefore, GTMDs
can be considered as partonic "mother functions". Moreover, two of the GTMDs play an impor-
tant role in the nucleon spin structure. We show that, by means of the exclusive double Drell-Yan
process, GTMDs for quarks can in principle be measured. This is the first known process which
is sensitive to these objects. We argue that specific GTMDs can be addressed via suitable polar-
ization observables. We also identify other processes that are directly sensitive to GTMDs.
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1. Introduction

Multi-dimensional imaging of strongly interacting systems is currently a very active research
area. The key quantities of this field are GPDs and TMDs — generalizations of the one-dimensional
parton distributions (PDFs), which provide multi-dimensional images of hadrons in position space
and momentum space, respectively. In this context, also GTMDs [1, 2, 3] have recently attracted
a lot of interest. Since several GTMDs reduce to GPDs and TMDs in certain kinematical limits,
they are often denoted as “mother distributions." Moreover, two of the GTMDs — F1,4 and G1,1

in the notation of [2] — play a crucial role for the nucleon spin structure. Both functions describe
the strength of spin-orbit interactions that are similar to those in a hydrogen atom [4, 5]. There is
also a direct relation between F1,4 and the orbital angular momentum (OAM) of partons inside a
longitudinally polarized nucleon [4, 6, 7]. It is remarkable that the same relation between F1,4 and
the quark OAM holds for both commonly used OAM definitions — the (canonical) one by Jaffe
and Manohar (LJM) [8], and the one by Ji (LJi) [9]. Moreover, it gives access to the so far elusive
LJM in quantum chromodynamics (QCD) on the lattice [6, 10].

While a number of model calculations of GTMDs is available by now, for many years it was
not known how GTMDs can be measured. Only recently it was shown that gluon GTMDs can be
accessed via diffractive di-jet production in deep-inelastic lepton-nucleon/nucleus scattering [11,
12, 13], and virtual photon-nucleus quasi-elastic scattering [14]. It was also pointed out that gluon
GTMDs can be studied in proton-nucleus collisions [15]. With the exception of [13], the papers on
observables for GTMDs deal with the small-x region of parton saturation.

We identify, for the first time, a physical process which gives access to quark GTMDs [16].
Specifically, we show how they enter the exclusive pion-nucleon double Drell-Yan process, πN→
(`−1 `

+
1 )(`

−
2 `

+
2 )N

′, where in the final state one has two di-lepton pairs plus a nucleon. We perform
a leading-order (LO) analysis in perturbative QCD. The GTMDs F1,4 and G1,1 can be measured
through suitable polarization observables, and other quark GTMDs could be systematically studied
in the same process.

2. Generalized TMDs

Let us first recall the definition of quark GTMDs for a nucleon [1, 2]. They parameterize the
off-forward transverse momentum dependent quark-quark correlator

W q [Γ]
λ ,λ ′ (P,∆,x,

~k⊥) =
∫ dz− d2~z⊥

2(2π)3 eik·z 〈p′,λ ′| q̄(− z
2)ΓW (− z

2 ,
z
2)q( z

2) |p,λ 〉
∣∣∣
z+=0

, (2.1)

where q indicates the quark flavor and Γ a generic gamma matrix. The 4-momenta and the helicities
of the incoming (outgoing) nucleon are denoted by p(p′) and λ (λ ′), respectively. We also use
the definitions P = (p+ p′)/2 and ∆ = p′− p. The two quark fields of the operator in (2.1) are
separated along the light-cone minus direction z− and the transverse direction~z⊥. (We define the
light-cone components of a generic 4-vector a = (a0,a1,a2,a3) through a± = (a0± a3)/

√
2 and

~a⊥ = (a1,a2).) The Wilson line W makes the bi-local operator color gauge invariant. The average
longitudinal and transverse quark momenta are given by x and~k⊥, respectively.
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Here we need the parametrization of (2.1) in terms of GTMDs for Γ = γ+,γ+γ5. In the case
of γ+ one has [2]

W q [γ+]
λ ,λ ′ =

1
2M

ū(p′,λ ′)
[

Fq
1,1 +

iσ i+ki
⊥

P+
Fq

1,2 +
iσ i+∆i

⊥
P+

Fq
1,3 +

iσ i jki
⊥∆

j
⊥

M2 Fq
1,4

]
u(p,λ )

=
1

M
√

1−ξ 2

{[
Mδλ ,λ ′−

1
2

(
λ∆

1
⊥+ i∆2

⊥

)
δλ ,−λ ′

]
Fq

1,1 +(1−ξ
2)
(

λk1
⊥+ ik2

⊥

)
δλ ,−λ ′ F

q
1,2

(1−ξ
2)
(

λ∆
1
⊥+ i∆2

⊥

)
δλ ,−λ ′ F

q
1,3 +

iε i j
⊥ki
⊥∆

j
⊥

M2

[
λMδλ ,λ ′−

ξ

2

(
∆

1
⊥+ iλ∆

2
⊥

)
δλ ,−λ ′

]
Fq

1,4

}
. (2.2)

To evaluate the first line of Eq. (2.2) we considered u(p,λ ) and u(p′,λ ′) as light-cone helic-
ity spinors (see, e.g., Ref. [17]). Also, M is the nucleon mass, ξ = (p+− p′+)/(p+ + p′+) =
−∆+/(2P+) the longitudinal momentum transfer to the nucleon, σ µν = i[γµ ,γν ]/2, and ε

i j
⊥ = ε−+i j

with ε0123 = 1. For a generic GTMD one has X = X(x,ξ ,~k⊥,~∆⊥), where the dependence on~k⊥ and
~∆⊥ is through the allowed scalar products of these vectors. Note that GTMDs are complex-valued
functions [1, 2]. Analogous to (2.2), the correlator W q [γ+γ5]

λ ,λ ′ is also parameterized through four GT-
MDs, denoted by G1,i (i = 1,2,3,4) in Ref. [2]. As pointed out above, our main focus will be on
the GTMDs F1,4 and G1,1. The real part of the GTMDs F1,1 and G1,4 is related to the distribution
of unpolarized quarks in an unpolarized nucleon and the distribution of longitudinally polarized
quarks in a longitudinally polarized nucleon, respectively [2, 4]. Since these distributions are large
we will also consider observables which are sensitive to their interference with F1,4 and G1,1. The
double Drell-Yan process implies in Eq. (2.1) a staple-like past-pointing Wilson line [18], identical
to the one that appears in TMD factorization of the ordinary Drell-Yan process [19].

3. Double Drell-Yan process and polarization observables

To calculate observables we consider the production of two virtual photons rather than two
di-lepton pairs. Specifically, we study the process

π(pb)+N(pa,λa)→ γ
∗
1 (q1,λ1)+ γ

∗
2 (q2,λ2)+N′(p′a,λ

′
a) . (3.1)

From here on the variables of the incoming and outgoing nucleon carry an index a. We concentrate
on large s = (pa + pb)

2 ≈ 2p+a p−b , large photon virtualities q2
1, q2

2, and small transverse photon
momenta, |~q 2

i⊥| � q2
i . In this region one can use TMD factorization. The longitudinal momentum

transfer to the nucleon is given by ξa = (q+1 + q+2 )/(2P+
a ). The LO diagrams for this process are

shown in Fig.1. The scattering amplitude depends on the helicities of the nucleons and photons,

T λ1,λ2
λa,λ ′a

= T µν

λa,λ ′a
ε
∗
µ(λ1)ε

∗
ν(λ2) , (3.2)

where εµ(λ1) and εµ(λ2) are the photon polarization vectors. One finds [16]

T µν

λa,λ ′a
= i ∑

q,q′
eqe′qe2 1

Nc

∫
d2~ka⊥

∫
d2~kb⊥δ

(2)
(

∆~q⊥
2
−~ka⊥−~kb⊥

)
Φ

q′q
π (xb,~k2

b⊥)[
− iεµν

⊥

(
W qq′ [γ+]

λa,λ ′a
(xa,~ka⊥)−W qq′ [γ+]

λa,λ ′a
(−xa,−~ka⊥)

)
−gµν

⊥

(
W qq′ [γ+γ5]

λa,λ ′a
(xa,~ka⊥)+W qq′ [γ+γ5]

λa,λ ′a
(−xa,−~ka⊥)

)]
, (3.3)
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Figure 1: LO diagrams for the exclusive double Drell-Yan process.

where eq and e′q are the quark charges in units of the elementary charge e. The expression in (3.3)
describes the double Drell-Yan process for all possible pion and nucleon charge states. Note that
Φ

q′q
π is the light-cone wave function as defined in [17] for instance, but with the operator q̄′γ−γ5 q.

Likewise, W qq′[Γ] is given by (2.1) with the operator q̄Γq′. In Eq. (3.3) we use the vector ∆~q⊥ =

~q1⊥−~q2⊥. The transverse momenta of the photons can be expressed by ∆~q⊥ and the transverse
momentum transfer to the nucleon~∆a⊥=−(~q1⊥+~q2⊥). The longitudinal quark momenta are fixed
according to xa = (q+1 − q+2 )/(2P+

a ), xb = 1− q−1 /p−b = q−2 /p−b . The value for xa implies the so-
called ERBL region [20, 21], characterized by −ξa ≤ xa ≤ ξa. From (3.3) one readily sees that the
dominant contribution to the amplitude is for transversely polarized photons.

Below we consider the unpolarized cross section, single-spin asymmetries (SSAs), and double-
spin asymmetries (DSAs). It is convenient to introduce

τUU =
1
2 ∑

λ ,λ ′
|Tλ ,λ ′ |2 , (3.4)

τLU =
1
2 ∑

λ ′

(
|T+,λ ′ |2−|T−,λ ′ |2

)
, (3.5)

τLL =
1
2

((
|T+,+|2−|T+,−|2

)
−
(
|T−,+|2−|T−,−|2

))
, (3.6)

where summation over the photon polarizations is implied. Obviously, τLU determines the numer-
ator of the longitudinal target SSA, whereas τLL describes the longitudinal DSA with polarization
of both the target and the recoil nucleon. Spin asymmetries for transverse polarization in the x-
direction or y-direction are defined accordingly.

In order to get direct access to F1,4, that is, without interference with other GTMDs, one has
to consider a linear combination of (polarization) observables [16],

1
4
(
τUU + τLL− τXX − τYY

)
=

2
M4

(
ε

i j
⊥∆qi

⊥∆
j
a⊥
)2C(+)

[
~β⊥ ·~ka⊥F1,4 Φπ

]
C(+)

[
~β⊥ ·~ka⊥F∗1,4 Φ

∗
π

]
+ 2C(+)

[
G1,4 Φπ

]
C(+)

[
G∗1,4 Φ

∗
π

]
. (3.7)

In Eq. (3.7) we use the shorthand notation

C(±)
[
w(~ka⊥,~kb⊥)X Φπ

]
= e2√

1−ξ 2
a Nc

∑q,q′ eqe′q
∫

d2~ka⊥
∫

d2~kb⊥ δ (2)
(

∆~q⊥
2 −~ka⊥−~kb⊥

)
w(~ka⊥,~kb⊥)

×
[
Xqq′(xa,~ka⊥)±Xqq′(−xa,−~ka⊥)

]
Φ

q′q
π (xb,~k2

b⊥) , (3.8)
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with w(~ka⊥,~kb⊥) a generic weight function. The vector ~β⊥ in (3.7) is given by ∆~q⊥ and ~∆a⊥ [16].
We repeat that in order to obtain Eq. (3.7) the photon polarizations have been summed over. In
Eq. (3.7), in addition to F1,4 the GTMD G1,4 appears which is presumably large as already men-
tioned above. However, one can separate the two contributions in (3.7) by not summing over the
photon polarizations but rather considering specific linear polarization states [18]. To address G1,1

one can study 1
4

(
τUU +τLL+τXX +τYY

)
. The result for this linear combination is identical to (3.7),

but with the replacements F1,4→ G1,1 and G1,4→ F1,1.
The observable in (3.7), as well as the corresponding observable for G1,1, may have a draw-

back: In these linear combinations there is cancellations of potentially large terms [18]. It may
therefore be beneficial to also explore interference between F1,4 (or G1,1) and other GTMDs. Such
an interference shows up in the following linear combination of longitudinal SSAs [16]:

1
2
(
τLU + τUL

)
=

1
2
(
|T+,+|2−|T−,−|2

)
=

4
M2 ε

i j
⊥∆qi

⊥∆
j
a⊥ Im

{
C(−)

[
F1,1 Φπ

]
C(+)

[
~β⊥ ·~ka⊥F∗1,4 Φ

∗
π

]
−C(+)

[
G1,4 Φπ

]
C(−)

[
~β⊥ ·~ka⊥G∗1,1 Φ

∗
π

]}
. (3.9)

Further polarization observables exist which involve interference between F1,4 (or G1,1) and other
GTMDs, but the one in (3.9) gives the simplest expression [18]. On the r.h.s. of (3.9) the imaginary
part of products of GTMDs appears. According to current knowledge the GTMDs most relevant
for the spin structure of the nucleon are ReF1,4 and ReG1,1. Though these functions contribute to
(3.9), they interfere with ImF1,4 and ImG1,1, respectively. At present, there exists no information
on the latter functions, and they may in fact be small. This issue can be overcome by considering
the observable 1

2

(
τXY − τY X

)
, whose result agrees with the r.h.s. of (3.9) but with Re{. . .} instead

of Im{. . .} [16].

4. Summary and Outlook

We have shown that quark GTMDs can be studied through the exclusive double Drell-Yan
process. To leading order in perturbative QCD, this process in sensitive to GTMDs in the ERBL
region. The main focus was on the GTMDs F1,4 and G1,1, which attracted much attention be-
cause of their relation to the spin structure of the nucleon. We have proposed several polarization
observables that can give access to these GTMDs. Other GTMDs could be explored via suitable
polarization observables [18].

An attempt should be made to numerically estimate the unpolarized cross section and the
various spin asymmetries for πN→ (`−1 `

+
1 )(`

−
2 `

+
2 )N

′. We also note that one can perform a similar
analysis for nucleon-nucleon collisions [18]. Moreover, hadronic final states typically give rise to
higher count rates. One such example is the process pp→ ηcηc pp, which can basically be treated
along the lines discussed above, but gluon GTMDs enter the analysis [18]. Finally, the type of
reactions discussed here could also provide constraints on GPDs in the ERBL region.
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