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We present predictions for Higgs boson pair production at next-to-leading order in QCD matched
to the PYTHIA parton shower retaining the full dependence on the top-quark mass. The con-
tribution of the virtual amplitude, which is only known numerically, is interfaced to both the
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sults obtained in both frameworks and we discuss the effect of the top-quark mass on the level of
differential cross sections.
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1. Introduction

While studying pair production of Higgs bosons at the LHC is a challenging task, it is also very
important for scrutinizing the mechanism of electroweak symmetry breaking, since the contribu-
tions of Higgs boson self interactions appearing in this process can be directly related to the Higgs
potential. Therefore, an accurate prediction of the production cross section is required, which is
dominated by the gluon fusion mechanism via a top-quark loop. In contrast to the single-Higgs
case, however, the Higgs Effective Field Theory (HEFT) approach, where the limit mt ! • is con-
sidered, only leads to a poor description of di-Higgs production, since the majority of the cross
section is obtained in the phase-space region above the production threshold for top-quark pairs.

The leading order process [1] already requires the calculation of one-loop box diagrams with
internal masses, and for the next-to-leading order (NLO) corrections the evaluation of correspond-
ing two-loop integrals is required. Since these integrals are not known analytically, only approx-
imated NLO results were available for a long time. In Ref. [2] the NLO cross section has been
calculated in the heavy top limit and rescaled by a factor of BFT /BHEFT , where BFT and BHEFT

are the squared Born matrix elements in the full theory and HEFT, respectively. This approach is
therefore called Born-improved (B.i.) HEFT. To include further top-quark mass effects, expansions
of the NLO contributions in 1/m2

T [3, 4, 5] have been performed. In Refs. [6, 7] the full top-quark
mass dependence has been included in the real radiation, which will be denoted by FTapprox in
the following. Furthermore, the NNLO cross section [8, 9, 4, 10] and resummation effects [11, 12]
have been studied in the HEFT.

Recently, the NLO correction including the full top-mass dependence has been calculated in
Refs. [13, 14] using numerical methods for the evaluation of the two-loop amplitude. This result
has been combined with NLL transverse-momentum resummation in Ref. [15] and with a parton
shower in Ref. [16], using both the POWHEG-BOX [17, 18] and the MADGRAPH5_AMC@NLO
framework [19, 20]. In this talk, we present the results obtained in Refs. [13, 14, 16].

2. Calculation

We only outline the calculation of the virtual amplitude and the methods used to interface it
to a parton shower. For more details on the calculation and on the implementation of leading order
and real radiation contributions we refer to Refs. [13, 14, 16, 6, 7] and references therein.

To construct the virtual amplitude, we implemented a multi-loop extension of the program
GOSAM [21, 22] to obtain algebraic expressions of the amplitude. Using the program REDUZE [23],
we reduced the appearing planar integrals to a finite basis [24] of master integrals; for the non-
planar integrals, however, we didn’t achieve a full reduction. All integrals have been evaluated
with SECDEC [25] using a quasi-Monte-Carlo algorithm [26, 27] for the numerical integration.

Since the numerical evaluation of the virtual two-loop amplitude requires a median runtime
of about 2 h on a cluster, a direct interface of the amplitude to the parton shower frameworks is
impracticable. We therefore constructed a two-dimensional grid in the Mandelstam variables ŝ
and t̂ to interpolate the virtual amplitude based on 3741 precomputed results. With the variable
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Figure 1: Fixed order distribution of the invariant mass of the Higgs boson pair and the transverse
momentum of a randomly selected Higgs in the full theory and using various approximations.

transformations

cq = |cosq | =
����
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we obtain a nearly uniform distribution of phase-space points in the variables x and cq if the func-
tion f is chosen according to the cumulative distribution function of phase-space points. As a first
interpolation step, we then define a regular grid in the new variables and estimate the amplitude
results at these points via a linear interpolation of the close-by precomputed points. The so de-
fined grid points are then used as input for the second interpolation step, where we use the python
SciPy [28] package to perform a Clough-Tocher interpolation [29] for estimating amplitude results
at arbitrary phase-space points. This two-step procedure avoids large interpolation artefacts caused
by fluctuations of the precomputed results, which are only known with few percent level precision.

The grid for the virtual amplitude is then interfaced to the POWHEG-BOX and the MAD-
GRAPH5_AMC@NLO framework where they are combined with the real emission contribution
and supplemented with the PYTHIA 8 [30, 31] parton shower.

3. Results

We present results for Higgs boson pair production at the LHC with a center of mass energy ofp
s = 14TeV. We set mh = 125GeV and mt = 173GeV and we use the PDF4LHC15 [32] pdf set

with the corresponding value of as. In Fig. 1 we present differential fixed order results. It can be
seen that the pure HEFT result leads to a wrong shape of the distributions with large contributions
in the high mhh and pT,h regions and the rescaling done in the B.i. HEFT is required to obtain the
correct shape of the distributions. In the high pT,h region, however, the B.i. HEFT prediction still
shows large differences compared to the full NLO result. This difference is caused partly by an
ambiguity in the mapping of real emission kinematics to corresponding Born events, such that the
rescaling of the LO amplitude is not unique. Including the top-quark mass effects also in the real
emission contributions (FTapprox) further improves the predictions, but still shows deviations from
the full NLO result, in particular in the tail of the mhh distribution.
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Figure 2: Effect of the parton shower on the transverse momentum of a Higgs boson and the radial
separation of the two Higgs bosons.
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Figure 3: Parton shower effect on the transverse momentum of the di-Higgs system. The left
plot shows results obtained in the full theory and various approximations. The right plot shows a
comparison of POWHEG-BOX and the MG5_AMC@NLO results.

Fig. 2 shows the effect of the parton shower on the pT,h and DRhh distributions using the
POWHEG-BOX framework, where the real radiation R is split into a singular and a regular region
according to

Rsing = R⇥F, Rreg = R⇥ (1�F), with F = h2
damp/(p2

T,hh +h2
damp), (3.1)

and only the singular part is exponentiated in the parton shower. The parton shower enhances
the tail of the pT,h distribution while slightly decreasing the contributions close to the peak at
pT,h ⇡ 130GeV. In the DRhh distribution, the parton shower leads to a large enhancement in the
region DRhh < p , which can only be filled by real radiation.

Parton shower effects of similar size are obtained in the pT,hh distribution shown in Fig. 3,
where the tail is enhanced by a factor of 2 compared to the fixed order result when using the
POWHEG method. Setting hdamp = • would further enhance the tail, which can be seen in
the right plot. In the MG5_AMC@NLO framework the definition of the shower starting scale
changed in version 2.5.3, leading to different behaviour of the pT,hh distribution. While previous
versions, where the scale was picked based on

p
ŝ, lead to results similar to the ones obtained with

POWHEG-BOX, newer versions choose the shower starting scale based on HT which reduces the
enhancements of the tail. Since the pT,hh distribution is entirely generated by real radiation, the
FTapprox leads to similar behaviour as the full calculation. The B.i. HEFT, however, leads to huge
deviations from the full result, showing the importance of the top-mass effects in HH production.
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4. Conclusions

We have presented results for Higgs boson pair production at next-to-leading order in QCD,
retaining the full dependence of the top-quark mass including matching to a parton shower. The
top-quark mass effects reduce the total cross section by 14% and modify the shape of distributions
relative to NLO results obtained in the HEFT apporach. While we observe only a small effect of
the parton shower on inclusive variables, we obtain large corrections, up to a factor of 2-3, for
observables sensitive to additional radiation.
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