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Unsupervised learning algorithm locally linear embedding (LLE) is a typical technique which 
applies the preserving embedding method of high dimensional data to low dimension. The 
number of neighborhood nodes of LLE is a decisive parameter because the improper value will 
affect the manifold structure in the local neighborhood and lead to the lower computational 
efficiency. Based on  the fact that  the shortest path in low-density can be established easily, this 
paper proposes an improved LLE method by using the sparse matrix in combination with the 
weights related to each point used for the linear combination in local neighborhood. The 
correlation dimension between high and low dimension is used to estimate the proper number of 
the reduced dimension, thereby selecting the best upper bound for the non-uniform manifold. 
Finally, we provide the experimental evaluation to verify the effectiveness of the proposed 
algorithm. 
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1. Introduction 

The data collection and the storage techniques have been enhanced over the past few 
decades as the development of modern industry and sensing technology. The number of 
available data used for observation or measurement about the engineering, economics and 
population is on the rise. This increases the difficultly of the theoretical analysis related to the 
multi-dimensional data such as signals, two-dimensional or three-dimensional images and stereo 
space etc in the statistical pattern [1]. 

Typically, it is not all of the data in the given samples are “useful” and “necessary” in the 
theoretical development. The data collected from the real world contains many noises, corrupt 
and missing value, so the data preprocessing such as data cleaning and filter is necessary before 
the model analysis. Specially, the data with high-dimension presents many computational 
efficiency and theoretical analysis challenges. The dimensionality reduction method is an 
effectiveness approach to extract the feature. This is because, on the one hand, the 
computational complexity will increase if all the available data are utilized for model analysis 
and sample investigation. On the other hand, the sample only contains the limited information 
because some data collected from one resource usually provide the redundant information. The 
data dimensionality reduction can capture the data characteristic as well as reduce the data 
dimensionality. Many methods had been developed for this issue in recent years although these 
methods came from many different disciplines [2]. Many famous techniques, such as principal 
components analysis (PCA) [3], multidimensional scaling (MDS) [4], independent component 
analysis (ICA) [5] and Factor analysis [6], can model the linear subspace (manifolds) for a given 
high dimensional observation. However, these methods have one common drawback: They only 
focus on the data characteristics in linear subspace. Therefore, many excellent methods, such as 
kernel PCA [7, 8], locally linear embedding (LLE) [9, 10], Laplacian eigenmaps (LEM) [11], 
Hessian eigenmaps (Hessian LLE) [12], locality preserving projections (LPP) [13] and 
Landmark isomap[14] can be used to solve the high dimensionality problem in nonlinear space. 

In the real application, the structure of data used for the analysis usually is mainly 
nonlinear. Locally linear embedding (LLE) can preserve embedding via the low-dimension 
calculation, which is a typically unsupervised learning algorithm through finding a point set in 
the nearest neighbors. The main advantage of LLE is that its topology of the original high-
dimension data used for observation is same as the low-dimensional one. However, its 
performance depends on the number of neighborhood nodes k, which is a decisive parameter 
because the improper k will affect the manifold structure in the local neighborhood, and even 
lower the computational efficiency. 

Based on outlined discussion, this paper proposes an adaptive neighborhood selection 
based on the sparse matrix and the weights about each point used for the linear combination 
according to fundamental fact that the shortest path in low-density can be established easily. 
This paper is organized as follows. In section 2, the formalization for manifold algorithm, 
dimensionality reduction representation is given and the locally linear embedding method is 
illustrated and the number of neighborhood nodes k selection method is presented. The 
correlation dimension measurement is given to calculate the proper number of the low-
dimension in Section 3. The numerical simulation is applied to demonstrate the performance of 
the improved LLE in Section 4. In Section 5, the derived results and prospective research issues 
is summarized and discussed. 
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2. Theoretical Analysis 

In this section, the manifold algorithm principle and the mathematical representation 
related to dimensionality reduction are given. 

2.1 Dimensionality Reduction and LLE 

The basic processing steps of the dimensionality reduction can be indicated as: 

 1 2, ,...,
T

ks s s s is a proper dimension with lower size k p , which is used to represent the 

variable  1 2, ,..., ,
T

px x x x with the mean  1 2( ) , ,...,
T

pE x      and variance

     ,
T

p p
x x x   


   . Note that, “variable” can be appropriately treated as the 

“features” in machine learning. The dimensionality reduction is defined by 
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1,...,
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   are the mean and variance 

with respect to  ,1 ,1 ,ijx x i p j n     respectively. w is the corresponding 

transformation weight matrix. In real world applications, many data have nonlinear structure 
compared to the linear data. 

Locally linear embedding (LLE) is designed almost the same time about the isomap, 
which is a typically nonlinear dimensionality reduction technique using the overlapping 
coordinate patches collection. The local feature will be focused on LLE compared to the linear 
dimensionality reduction method such as principal component analysis and nonlinear 
dimensionality technique Isomap etc, LLE tries to construct a graph used to represent the data 

ix in the high-dimensional dataset. LLE can establish the nonlinear mapping from the high-

dimensional dataset to low-dimensional one even in the non-convex manifold by using the local 
point in combination with the corresponding neighborhood point to represent the manifold. At 
the same time, the weight of the linear combination is remained unchanged. 

Assume that the weight w is calculated by linear combination with the given ix and the 

corresponding points in the neighborhood. Then the hyperplane related to outline points can be 

fitted by the LLE in the local manifold. Thus the linear combination w is invariant for 
transformation, rotation and scaling such that the local feature in the low-dimensional remained 
well. The cost function about the LLE is defined by: 

 
2 2( )

1,...
, 1, 1,...,k

i ij iji j n
x x subject to x k n 

 
    x  (2.2) 

where ( )kx represents the kth column corresponding to variable ix in the fundamental solution 

matrix except the trivial solution x=0. 
Roweis and Saul[15] proposed that the minimizing the cost function in the low-

dimensional space can be implemented via the eigenvectors corresponding to the smallest non-

zero eigenvalue related to the matrix    T
I W I W  . The W is a sparse matrix with size n n , 

and the reconstructed weight is equal to the element at the ith row and jth column. I is a unit 
matrix with same size as W. Essentially, the LLE is a manifold algorithm about the linear 
combination [16, 17], the successful example in practical application such as hyperanalytic 
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solution [18], auditory localization [19] etc, and the negative examples such as the visualization 
of the synthesis of biomedical datasets [20]. 

2.2 Strategy Design 

The neighbor point selection is a critical factor for the performance of the LLE, and the 
improper number of the neighbor point will bring the instability topology of the manifold 
algorithm. For instance, the performance of the LLE is instable in the computer vision[21]. One 
possible explanation is that the “short circuit phenomenon” appears in the LLE learning. In 
addition, the performance of LLE will be degraded when the data with high-dimension is 
“overlapping” due to the covariance constraints [22]. Typically, the quality of the established 
mapping has potential influence on the neighbor point selection. However, this method has high 
computational cost and brings the lower computational speed. So this paper proposes an 
adaptive neighborhood selection technique to avoid the “short circuit phenomenon” based on 
the principle that the shortest path in low-density can be established easily because the largest 
neighborhood points results of the geodesic distance cannot be replaced by the shortest path. 
Thus the sparse matrix about the weight value can be adjusted via the information produced by 
the neighborhood points having “short circuit”. The computing speed for searching is very fast 
so that the adjustment of the sparse matrix is very fast as well. The computational complexity 
and the information storage is about O(nd), in other word, it is suitable for the practical 
application. The proposed strategy for improved LLE (ILLE) is given in detail as follows. 

The manifold denoising based on the given graph is constructed by the submanifold. The 
distribution probability of the data with noise in a submanifold for utilized sample can be 
computed by 

   
 

   
2

22 222
ik

XP e p dV


  



 

x

x
M

                           (2.3) 

where  is the parameter of distribution function,  i  and  are the mean and variance 

of the variable x . p() is the kernel function. V() is the volume integral element. The Gaussian 

measure related to the outlined formula is equivalent to the heat kernel 

   
2

2, 4 exp
4

k

tp t
t

   
  

 
 

x y
x y , which is essentially a diffusion process on Rk. The 

distribution of the submanifold is unknown and calculated by the true data-generating 
probability measurement formula in [23]. Based on the data preprocessing, the performance of 
the unsupervised learning algorithm LLE will be improved by the manifold denosing algorithm. 

Assume the given real-valued N×D dataset, and the corresponding neighbors have locally 
linear patch. Characterize the local geometry information at each patch, and initial the N×k 
sparse marix, where k is specified as a proper real-valued number used to reconstruct the weight 
based on the data and its neighbors. 

Error function is set in order to adjust the number of the neighbor points k until the error 
reaches the minimum, which is defined by 

   2

rec i ij ji j
error   w x w x                                   (2.4) 
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The connection strength wij at the jth data corresponding to the ith reconstruction is 
calculated. wij =0 if there is not any affiliation between xj and the set of neighbor point xi, the 

rows in the weight matrix satisfying 1ijj
 w . 

The High-dimensional observation xi is mapped into a low-dimensional variable yi based 
on the proper k in steps  to minimize the following cost function 

    2

rec i ij ji j
error   w y w y                                              (2.5) 

The optimization processing is finished and the proposed approach is fast convergence and 
performance robust. 

3. Intrinsic Dimensionality Estimation 

The intrinsic dimension for the reduced low-dimension manifold needed be estimated by 
the proper method because the improper dimension will destroy or lose the feature of the high-
dimension manifold. In [24], Christopher figured out that the intrinsic dimension can be defined 
via a scale-dependent quantity method. For instance, the Nystrom method is a typical technique 
used for the numerical approximation in manifold algorithm. In this section, the correlation 
dimension is used for the intrinsic dimension estimation, which is similar to fractal dimensions 

[25] used in fractal geometry. If the finite set  1 2, ,...,n nx x x  in metric space X , let 

   21,..., 1,...,
i j

n i n j i n x x r
C r I

    
                                      (3.1) 

where  
2

1n n
 

 , n is the length of the given dataset. IA is the corresponding index set. 

The integral is given by    
0

lim n
r

C r C r


 for a countable subset  1 2, ,...S x x X  . If C(r) 

can be derived, then the correlation dimension of n is defined by
0

log ( )
lim

logcorr r

C r
CD

r
 . Thus, 

the intrinsic dimension is estimated before the nonlinear mapping is established. 

4. Numerical Simulation 

In this section, the famous high-dimensional manifold [26, 27] such as Swiss, changing 
swiss, broken swiss, helix and twinpeaks are used for the performance verification of the ILLE 
(Improved LLE) respectively. In addition, three methods related to the dimension estimation are 
given in order to compare the dimension estimation under different criteria. The original size of 
the original dataset is set as: 5000*3, the detailed information is given in table 1. 

Dataset CorrD NearND GMST TLLE(ET) HessianLLE(ET) ILLE(ET) 
Swiss 2 1 2 13.2486 12.7917 9.2968 
Cswiss 2 1 2 13.4927 12.7648 9.6872 
Bswiss 2 1 2 12.1695 12.7083 9.1383 
helix 2 1 2 12.2348 12.5893 9.5459 
twinpeaks 2 1 2 12.9661 12.9476 9.0787 

Table 1: Performance Comparison 
where the CorrD represents the outlined correlation dimension, NearND denotes the 

methods based on the nearest neighbor dimension, GMST indicates the method based on the 
analysis of the geodesic minimum spanning tree.TLLE(ET) is the elapsed time in traditional 
LLE in seconds, ILLE(ET) is the elapsed time by the improved LLE in seconds, Cswiss and 
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Bswis are the Changing swiss and Broken swiss respectively. The intrinsic dimension 
estimation is calculated by the following formula, 

2 1

2 1

log ( ) log ( ) 3.3802 5.9292ˆ 1.9271 2
log log 2.3683 3.6910corr

C r C r
CD

r r

                
  (4.1) 

where    represents the upper bound of the given number in integer. The three-

dimensional (3D) visualization about the swiss, broken swiss data set and the corresponding 
two-dimensional (2D) dimensionality reduction results by the ILLE are given in Figs. 1-4, 
respectively. 

 
Figure 1: 3D Visualization about the Swiss Dataset 

 
Figure 2: 2D Dimensionality Reduction Results by the ILLE for Swiss Dataset 

 
Figure 3: 3D visualization about the broken Swiss dataset 
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Figure 4: 2D Dimensionality Reduction Results by the ILLE for Broken Swiss Dataset 

Based on the simulation results in Table 1, the performance of the ILLE is better than 
TLLE, and the account of average cost time uses ILLE is reduced by about 27.10% compared to 
the TLLE in general, which demonstrates that the ILLE is an effective approach for improving 
the performance of TLLE based on the famous dataset. 

5. Conclusion 
This paper proposed an ILLE by using the sparse matrix and the weights related to each 

point. Firstly, the fundamental theory analysis is given to illustrate the basical introduction for 
the further analysis. Secondly, ILLE and the associated theoretical analysis is presented, the 
number of neighborhood nodes selection method is presented in order to improve the 
computational efficiency and performance of the TLLE; therefore, the performance of TLLE is 
improved by overcoming the shortcoming of TLLE. Thirdly, the correlation dimension 
technique is used to estimate the intrinsic dimension of the high-dimension manifold. Fourthly, 
the numerical simulation based on the famous high-dimensional manifold is used to verify the 
effectiveness and practicability of the proposed strategy. Finally, this paper is summerised in the 
last section. We believe that  the proposed results have significant reference value on theoretical 
analysis and actual aspect, and it can be extended for other high-dimensional manifold 
algorithm reduction. 
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