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A new  constrained  multi-objective  optimization  algorithm  based  on  ε adaptive  weighted
constraint  violation,  AW-CMOA,  is  proposed  to  solve  the  constrained  multi-objective
optimization problems. Considering different levels of difficulty in the satisfaction of varied
constraints, a new ε constraint handling strategy for multi-objective optimization, in which the
constraint violation is redefined and the self-adapting  ε level parameter is set, is designed to
make the  constraint  violation for  individual  to  reflect  its  true  quality more  objectively and
accurately. Simultaneously, according to the features of the constrained multi-objective and the
evolutionary  mechanism  of  BBO,  the  model  of  constrained  multi-objective  optimization
applicable to BBO is built. In the model, the habitat suitability index, in combination with the
degree  of  feasible  and  the  Pareto dominance  relation between the  individuals,  is  redefined.
Moreover, the self-adaptive method of determining the migration rate is designed to improve the
ability for exploitation and the utilization of  better individual.  Numerical experiments have
shown  that  the  proposed  algorithm  is  competitive  to  other  constrained  multi-objective
optimization algorithms in terms of  convergence and distribution, and is capable of solving the
complex constrained multi-objective optimization problems more effectively and efficiently.
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1.Introduction

In  the  field  of  scientce,  engineering  and commerce,  etc.,  many complex  optimization
problems  involve  multiple  objectives  and  constraints,  which  are  called  constrained  multi-
objective  optimization  problems  (CMOPs)  [1].  Due  to  the  conflicts  of  objectives,  the
interference among constraints,  and the interrelationship between constraints and objectives,
there are some difficulties in solving CMOPs [2]. Many optimization methods [3,4] have shown
good search performance relatively, but there are still problems that it is easy to fall into the
local optimal frontier and cannot take into account the convergence and distribution. Thus, the
key of solving the problem lies in the effectiveness of constraint handling method [5,6]  and the
efficiency of  evolutionary mechanism.  In  addition,  we  also  need  to  coordinate  the  balance
between the constraint handling technology and the multi-objective evolutionary strategy.  In
order to obtain better solution performance on CMOPs, this paper proposes a new ε-constrained
multi-objective  handling  mechanism.  Moreover,  On  the  basis  of  biogeography-based
optimization (BBO)[7], a new constrained multi-objective optimization algorithm based on  ε
adaptive weighted constraint violation (AW-CMOA) is proposed. The remainder of this paper is
organized  as  follows.  Section  II  presents  a  detailed  description  of  AW-CMOA.  Section  III
reports   the  simulation  results  and  shows  the  performance  of  the  proposed  algorithm  in
comparison  with  other  well-known  optimization  algorithms.  Section  IV presents  the  study
conclusions.

2.The proposed algorithm

2.1Modified ε-constrained Handling Mechanism

The main principle of  ε-constraint handling technology is to measure the quality of the
individual  by  comparing  the  level  parameter  ε with  the  constraint  violation  degree  of  the
individual. However, as the feasible space of CMOPs is often divided the constraint conditions
into several isolated regions, at meanwhile, there is a certain degree of difference in satisfying
different constraints. The degree of constraint violation is obtained by the linear summation may
prompt  the  search  to  move  fast  toward  the  feasible  region  which  is  divided  by constraint
conditions satisfied easily. Thus some superior infeasible individuals with satisfying sectional
constraints or a lower degree of constraint violation for the part but a little higher degree of
constraint violation for the whole cannot be retained. Accordingly, there is a fault in the range of
the individual. In the prophase of evolution, the algorithm may untimely fall into local optimum
in the process of finding feasible region; therefore, in consideration of the difference of degree
of  difficulty  satisfying  various  constraints,  we  need  to  carry  out  the  research  on  the  new
determination method of constraint violation.

2.1.1Determination of Constraint Violation of iIdividuals

In order to make the comprehensive constraint violation for individual to reflect the real
degree of individual constraint violation more objectively, the adaptive  ε constraint violation
degree determination method is proposed  in Formula(2.1). A level parameter  εj, is given for
each constraint  j,  at  meanwhile, the comparing results between the violation degree of each
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constraint φ j(x ) and its level parameter εj, and the satisfaction degree of each constraint are

added to the determination of the individual constraint violation degree.

ϕ ( x)=∑
j=1

m n jfea

NP
×(max(0,φ j(x )−ε j(t)))               (2.1)

Where NP is the total number of individuals in the current population; njfea is the number

of individuals satisfying the jth constraint ( φ j(x )=0 ); εj (t) is the level parameter of the jth

constraint at t time, as determined by Formula (2.3) in the following Chapter.  For CMOPs, in
order  to  further  measure  the  quality  of  individuals,  we  also  need  to  integrate  the  Pareto
dominance relationship of multi-objective into the comparisons among individuals. Therefore,
in  this  paper,  on  the  basis  of  the  original  ε  level  comparison  criterion,  a  new  ε constraint
criterion is proposed by combining the Pareto dominance with the adaptive constraint violation

degree ϕ ( x) .  For  individual  x1  and  x2 in  population  H,  the  ε constraint  dominance

relationship is shown as:

x1≻ε x2⇔{x1≻ x2,ϕ (x i)=ϕ ( x2)

ϕ ( xi)<ϕ (x2)
                  (2.2)

The new ε constraint criterion evaluates the quality of the individual by substituting the
comparison result of the parameter ε and individual constraint violation degree into ε constraint
dominance relation.

2.1.2Determination Mechanism of Level Parameter ε

In  ε constraint  method,  the  comparison  between  level  parameter  ε and  the  degree  of
individual constraint violation is substituted to the ε constraint domination relation to reflect the
quality of individual. However, the traditional method of determining the level parameter ε has
its own defects. The change trend of ε only depends on the number of iterations and it does not
take into account the quality of the individual. Thus, it is easy to cause the constraint pressure
which the constraints of individuals are dominated by ε smaller.

In the new constraint multi-objective handling mechanism proposed in this paper, the  ε

constraint violation degree ϕ ( x) of individuals can directly reflect the quality of individuals,

but it is necessary to give a level parameter  εj for each constraint condition  j. In view of the
problem available in the original level parameter mentioned above, a new method is proposed
here. For the jth constraint, all of εj of each generation is adaptively adjusted for the changes of

feasible region according to the  jth constraint violation degree of the individual  x. φ j(x )

participates in adjusting the level parameters in the form of the proportion of it in the violation

degree of the individual. The larger φ j(x ) may affect the level parameter  εj with a smaller

proportion, and the effect of the smaller φ j(x ) on εj may increase as its proportion increases.

For each constraint condition, with the increase of the number of iterations, the determination of
level  parameters  proposed  in  this  paper  can  adaptively  vary  according  to  the  individual
constraint violation, and make full use of the effective information of the superior infeasible
individuals,  which  can  effectively improve  the  search  efficiency of  the  feasible  region.The
determination of this new level parameter is shown as follows:

           

3



P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
6
2

Constrained Multi-objective Optimization Algorithm Based on ε AWCV                                        Jue Wang

  ε j(t)={
∑
i=1

NP

φ j
t
(x )×

φ jmax
t

−φ j
t
( x)

φ jmax
t

−φ jmin
t

∑
i=1

NP φ jmax
t

−φ j
t
(x)

φ jmax
t

−φ jmin
t

,φ jmax
t

≠φ jmin
t

0,φ jmax
t

=φ jmin
t

            (2.3)

Where φ j
t
(x ) is the constraint violation of individual Xi at time t; φ jmax

t and φ jmin
t

are  the maximum and minimum of φ j
t
(x ) . 

2.2Modified Determination Method of Habitat Suitability Index

In view of the fact  that  the BBO algorithm itself  is  incapable of  dealing with multi-
objective optimization and the constraints, a multi-objective optimization model is designed in
this paper, which is suitable to the BBO algorithm based on the new multi-objective constraint
handling  mechanism.  At  meanwhile,  considering  the  greater  effect  of  the  performance  of
evolutionary strategy on the overall  performance  of  the  algorithm,  in  order  to  improve the
constrained  optimization  ability  of  multi-objective  optimization,  the  efficiency  of  BBO
algorithm must be ensured. Therefore, it is necessary to redefine the Habitat suitability index
(HSI) first. Since the evolution strategy of original BBO and its improved methods are only
applicable to SOPs, it cannot meet the needs of multi-objective optimization, next, the evolution
mechanism of the BBO is improved on the migration rate determination strategy. 

In the BBO algorithm, the habitat suitability index (HSI) is an indicator of measuring the
habitat  quality.  For  CMOPs, in  consideration of the characteristics  of multi-objectives,  it  is
necessary  to  determine  HSI  by  combining  Pareto  dominance  among  habitat  individuals.
However, it is far from enough to define the HSI which is not enough to evaluate the quality of
the habitat in this way and the constraints should also be taken into account fully. Thus it is ideal
to design a determination mechanism of HSI, which can take into account the Pareto domination
relationship and the degree of constraint satisfaction of individual itself. For this purpose, this
paper proposes a new determination method of habitat suitability index HSI on the basis of the
idea of  ε constraint domination mentioned above. First,  the individuals in habitat population
H={xi,i=1,2,…,NP} is ranked in ascending order in accordance with the adaptive ε weighting
constraint violation and form a new habitat population H. Then, the ε feasible habitat population

Hεfea={xi| ϕ ( x i) =0}  of  current  new population  H is  determined  and  the  non-dominance

degree Fi of individual xi in Hεfea is calculated by Formula (2.4).

F i= ∑
xi ∈H ε fea , x j≻ xi

〈
1

NP
∣〈k∣x j , xk∈H ε fea∧x j≻ xk , H ε fea=〈 xi ∣ϕ (x i)=0 〉〉〉  (2.4)

Where i , j , k∈{1,2,. .. , NP}; x i , x j , xk∈H is  the  individual  including  n-

dimensional  suitability index variables.  Finally,  the  HSI  Gi of  the  individual  xi in  the  new
habitat population H is determined as Formula (2.5).

Gi=max(ϕ (x i) ,0)+F i
'

F i
'
={ F i ,ϕ ( xi)=0

F max ,ϕ ( x i)≠0
                      （2.5)
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2.3Adaptive Determination Method of Migration Rate

The  habitat  individual  which  needs  to  immigrate  or  emigrate  in  BBO  algorithm  is
determined separately to carry out the species migration by migration rate. In order to reflect the
quality  of  individuals  in  real  time,  an  adaptive  determination  method  of  migration  rate  is
proposed to ensure that it can make full use of the information of better individuals on  different
stages of evolution.  The HSI of the normalized individuals is  used to adaptively adjust  the
migration rate by combining the proportion of  ε feasible individuals in the current population
and  the  proportion  of  non-dominated  individuals  in  ε feasible  individuals.  The  adaptive
immigration rate λ and the emigration rate μ are determined  in the following formula:

λ i=(
Gi−Gmin

Gmax−Gmin

)
NP1−( a+1)

η

μ i=1−λ i

                        (2.6)

Where Gi is the HSI of xi; Gmax and Gmin are the maximum and minimum of HSI of current
population; a is the non-dominated rate of current ε feasible population Hεfea, the proportion of
non-dominated ε feasible individuals in the number nεfea of Hεfea individuals; η  is the current
ε feasible rate, the proportion of  nεfea  in the total number  NP of habitat individuals.  Under the
premise of ensuring that the individual information of the current population can be effectively
utilized, this method can reflect the individual's quality at real time,  evaluate the immigration
individual and emigration individual more accurately and scientifically.

2.4Description of AW-CMOA Algorithm

Step 1. Initialize the parameter, which involves mmax, rmax, rmin, β. Randomly generate NP
individuals as initial population H={xi,i=1,2,…,NP}. 

Step 2. Calculate the objective function F(xi) =(f1(xi),…, fM(xi)) and the constraint violation

degree γ (x i)=(φ 1(xi) , ... ,φ m(x i)) of each habitat individual xi.

Step 3.Calculate the  ε value under each constraint of  xi, and determine the  ε  constraint

violation  degree ϕ ( x i) of  xi.  Sort  xi by  its ϕ ( x i) in  ascending  order,  reform  a  new

population H. According to ϕ ( xi) , determine the feasible population Hεfea in H,  calculate the

non-dominated degree Fi of  individal  in Hεfea,  thus obtain the HSI value  Gi of  each habitat
individual xi.

Step  4.  Sort  the  habitat  individuals  of  H by HSI in  ascending  order,  reserve  the  NP
individuals with better distribution and non-dominated as current optimal habitat population H.

Step 5. Determine the species immigration rate λi and the emigration rate μi of xi in H, and
calculate the species probability Pi and mutation rate mi. On the basis of immigration rate λi and
the emigration rate μi, make migration and mutation, and thus obtain new population H. Judge

whether it satisfies the termination condition or not. If it satisfies the condition, go to Step 6；
otherwise go to Step 2.

Step 6. Output the non-dominated feasible population H.

3.Simulation

In  this  section,  in  order  to  evaluate  the  performance  of  AW-CMOA on  solving  the
constrained  multi-objective  optimization  problem,  it  is  compared  with  several  constrained

5
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multi-objective optimization algorithms which are the most representative and best optimized
such as C-PSA[2], MOABC[3] and CMOPSO[4] on the accepted test functions TNK, SRN,
CONSTR and OSY[4]. The initial population size of AW-CMOA and the other 3 algorithms are
set  as  100.  In  AW-CMOA,  mmax=0.005,  rmax=0.9,  rmin= 0.4,  β=0.02.  Furthermore,  the  other
parameters are set as described in the comparison algorithm. Three evaluation criteria [8] as two
set coverage (C), generational distance metric (GD) and space metric (SP) are used together to
test  the  performance  of  each  algorithm.  For  fair  comparison,  each  algorithm  is  run
independently 40 times and the algorithm stops when the number of function evaluation per run
reaches 25000.

Table 1 shows the experimental results of  4 algorithms for the 4 standard test functions on
the C index including the average (outside brackets) and standard deviation (in brackets). The
mutual dominance relation between the two sets of solutions is reflected directly to measure the
relative convergence of the solution set. The statistical box figure of C index among AW-CMOA
and other 3 algorithms is shown in Fig. 1, where AW-CMOA, C-PSA, MOABC and CMOPSO
is expressed as 1~4.  For 4 test functions, C (1,2) is greater than C (2,1).  It  shows that  the
solution obtained by the proposed algorithm AW-CMOA features a higher degree of dominance
over the solution obtained by C-PSA. Similarly, the other results are C(1,3) greater than C(3,1),
C(1,4) greater than C(4,1). It shows that the proportion of the solution which can be dominated
by the solution set of AW-CMOA in C-PSA, MOABC and CMOPSO is much larger than the
proportion of the solution that  can dominate the solution of the AW-CMOA. Therefore,  the
convergence of the Pareto optimal front of AW-CMOA is better than that of  other 3 algorithms.

Test Function C(1,2) C(2,1) C(1,3) C(3,1) C(1,4) C(4,1)

TNK 0.48(0.00432) 0.07(0.00212) 0.65(0.00738) 0.01(0.00026) 0.55(0.00219) 0.11(0.00038)

SRN 0.59(0.00763) 0.19(0.00216) 0.75(0.00335) 0.14(0.00127) 0.54(0.00094) 0.21(0.00081)

CONSTR 0.47(0.00375) 0.04(0.00073) 0.61(0.00742) 0.02(0.00033) 0.38(0.00988) 0.03(0.00050)

OSY 0.46(0.00532) 0.02(0.00047) 0.85(0.00453) 0.03(0.00112) 0.63(0.00136) 0.01(0.00035)

Table 1: Statistical Results of C indicator by 4 Algorithms on 4 Functions
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        (a) C(1,2) and C(2,1)                                  (b) C(1,3) and C(3,1)                               (c) C(1,4) and C(4,1)   

Figure 1:Statistical Box of C Indicator by 4 Algorithms

Considering that the comparison results of C index is largely dependent on the contrast
algorithm, Table 2 shows the experimental results for the 4 test functions on the GD index for
the  purpose  of  further  analyzing  the  convergence  performance  of  the  4  algorithms.  The
statistical box figure of GD index is shown in Fig. 2. As  seen from Table 2 and Fig. 2, for 4 test
functions, compared with C-PSA, MOABC and CMOPSO, AW-CMOA can not only obtain the
minimum average GD value, but also  the minimum GD value which is less than the minimum
value obtained by other algorithms.  It is shown that the results obtained by AW-CMOA are
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closer to the ideal Pareto front and have obvious advantages in convergence. At the same time,
as  seen  from Fig.  2,  the  outliers  in  the  data  obtained  by  AW-CMOA are  less  than  other
algorithms,  which  indicates  that  AW-CMOA has  the  best  convergence  stability  in  the  4
algorithms.

Test Function CMOBBO C-PSA MOABC CMOPSO

TNK 9.23E-05 (3.88E-07) 4.17E-04 (1.86E-05) 7.11E-04 (2.04E-05) 7.82E-04 (7.72E-05)

SRN 3.83E-04 (5.01E-06) 6.29E-04 (8.47E-06) 2.75E-03 (3.98E-04) 9.12E-04 (3.77E-05)

CONSTR 6.74E-05 (5.32E-06) 8.98E-05 (3.08E-06) 7.12E-04 (1.06E-05) 4.84E-04 (2.75E-05)

OSY 6.06E-04 (7.25E-06) 5.14E-03 (1.40E-05) 1.38E-02 (3.41E-03) 7.73E-03 (5.12E-05)

Table 2: Statistical Results of GD Indicator by 4 Algorithms on 4 Functions
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Figure 2: Statistical Results of GD Indicator by 4 Algorithms on 4 Functions

For the purpose of evaluating the distribution of the solution set of  4 algorithms, Table 3
shows the experimental results on the SP index, the SP index of each algorithm is shown in Fig.
3. It is not difficult to see from Table 3 and Fig. 3, for 4 test functions, the SP value obtained by
AW-CMOA is the least and the outliers in the statistical data are the least, which indicates that
AW-CMOA has more advantages than the other 3 algorithms in distribution, the approximate
Pareto optimal solution set can be distributed more uniformly.

Test function CMOBBO C-PSA MOABC CMOPSO

TNK 7.12E-03 (2.23E-05) 8.82E-03 (7.03E-05) 1.91E-02 (4.46E-03) 1.89E-02 (3.33E-03)

SRN 5.86E-03 (8.20E-05) 1.15E-02 (8.22E-03) 3.93E-02 (6.24E-03) 2.85E-02 (5.86E-03)

CONSTR 4.48E-02 (3.93E-04) 7.41E-02 (9.12E-04) 9.01E-02 (6.15E-03) 8.79E-02 (9.12E-04)

OSY 1.12E-01 (8.84E-04) 6.17E-01 (9.23E-03) 8.67E-01 (1.48E-02) 7.28E-01 (8.63E-03)

Table 3: Statistical Results of SP Indicator by 4 Algorithms on 4 Functions
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Figure 3: Statistical Results of SP Indicator by 4 Algorithms on 4 Functions

Based on the above analysis, it is found that both the convergence and the distribution
uniformity, AW-CMOA has obvious advantages compared with the other 3 algorithms, and can
obtain an approximate Pareto optimal solution set which is closer to the ideal Pareto front and
more uniform distribution.
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4.Conclusion

In this paper, the constrained multi-objective optimization algorithm based on ε adaptive
weighted constraint violation (AW-CMOA) is proposed. It shows a ε multi-objective constraint
handling method by the following mechanism. On one side, taking into account the difficulty
difference in the satisfaction of the different constraints,  an adaptive weighted determination
method of  ε  constraint  violation  is  proposed  to  reflect  the  constraint  satisfaction  degree  of
individuals  more  objectively.  On  the  other  side,  according  to  the  violation  degree  of  each
constraint of the individual, the level parameters are adaptively adjusted to enhance the ability
of search purposively for feasible region. After determining the constraint handling method, in
combination  with  the  multi-objective  constraint  handling  method  mentioned above  and  the
mechanism of BBO itself, a constrained multi-objective optimization model suitable for BBO is
established. In this model, the habitat suitability index is redefined. After that,  on the basis of
preserving  the  original  idea  of  BBO,  the  new  evolutionary  mechanism for  AW-CMOA is
redesigned. The simulation results show that the AW-CMOA proposed in this paper can improve
the  convergence  and  distribution  uniformity  of  the  solution  sets by  comparing  with  other
algorithms, and can effectively and efficiently solve the multi-objective optimization problem of
complex constraints.
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