
P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
7
9

Designing A Unified Architecture Graphics
Processing Unit

Lingjuan Wu1

Wuhan Digital Engineering Institute
Wuhan, 430205, China

E-mail: wljuan17503@163.com

Liang Huang2

Wuhan Digital Engineering Institute

Wuhan, 430205, China
E-mail: hvb60@163.com

Tinggang Xiong3

Wuhan Digital Engineering Institute
Wuhan, 430205, China

E-mail: xtg_hb@aliyun.com

Graphics Processing Unit (GPU) performs graphics computing and its architecture has
developed from the fixed function pipeline to the programmable unified pipeline. Unified
architecture promises dynamic load balancing and guarantees the high parallel computing of
GPU. This paper presents the design and implementation of a unified architecture GPU. The
unified shader is based on the SIMD and SIMT architecture. On the thread level, SIMT
guarantees the full-load capability of unified shader by thread managing and scheduling. On the
instruction level, SIMD controls the execution of the unified shader hardware unit. We finish the
algorithm, architecture design and Verilog RTL implementation. The verification results on
FPGA show that the proposed GPU works correctly and its vertex and fragment processing
speed reaches one unit per clock cycle.

CENet2017
22-23 July, 2017
Shanghai, China

1Speaker
2This study is supported by National Natural Science Foundation of China (61403350)
3 Corresponding Author

 Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

http://pos.sissa.it/

P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
7
9

Designing a Unified Architecture Graphics Processing Unit Lingjuan Wu

1. Introduction

Graphics Processing Unit is a highly parallelled processor specialized for 2D and 3D
graphics computing. With the increasing demand for higher performance and higher resolution
graphics applications, GPU becomes a key factor in computer embedded system design. Modern
GPU is programmable and has its own instruction set like CPU, but with much more powerful
parallelled computation capability. GPU can also be used for general propose computing known
as GPGPU [1-3].

The concept of GPU was proposed by Nvidia in GeForce 256 in 1999 which was based on
the fixed function pipeline. It is the first time that geometry transformation, lighting, and texture
mapping are implemented by hardware while before that graphics computing were implemented
by CPU. Hardware implementation improves the computing speed but lacks of flexibility
because these hardware units are not programmable.

Since then, the programmable pipeline [4] and unified graphics pipeline [5-7] have been
introduced to GPU design for higher performance and programmability. In programmable
pipeline, vertex shader and fragment shader are introduced for vertex and fragment computing
respectively. And the shader is programmed by the GLSI language on user application level.
This architecture improves the GPU’s programmability, but vertex and fragment are computed
in separate hardware modules. For programs with more vertex than fragment, the vertex shader
works in full load but the fragment shader is idle and vice versa. Thus, unified graphics pipeline
is introduced.

In the unified graphics pipeline, a hardware unit called unified shader executes vertex,
fragment and geometry programs [8]. The data flow is shown in Figure1. GPU accepts data and
commands from the CPU.Vertices are firstly processed in the unified shader for geometry
transformation, lighting computation and texture coordination calculation. Then after primitive
assembly and rasterization, fragments are generated for each primitive. Fragments are further
processed in the unified shader for lighting and fog processing. Finally, pixels are generated in
pixel engine after antialiasing, scissor test and stencil test. One fragment generates one pixel or
several fragments are interpolated to generate one pixel based on antialiasing algorithm. Pixels
are stored in the frame buffer and will be displayed on the monitor. Unified architecture
promises dynamic load balancing of shader and improves hardware utilization.

Figure 1: Unified Graphics Pipeline

In this paper, we present the design and implementation of a unified architecture GPU
based on SIMT (single instruction multiple thread) and SIMD (single instruction multiple data)
shader unit. SIMT implements thread scheduling and management on the thread level and
makes sure that the shader unit works in full load state. SIMD manages the hardware unit with
instruction scheduling. The unified shader is designed based on extendable processing element
and the computing capability can be improved by integrating more elements. We finish the
algorithm, architecture and Verilog HDL design. The verification results on Xilinx FPGA show

2

Primitive
assembly

Rasteri-
zation

Unified
shader

Pixel
engine

Frame
buffer

Unified
shader

P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
7
9

Designing a Unified Architecture Graphics Processing Unit Lingjuan Wu

that the proposed GPU works correctly, and vertex and fragment processing speed reaches one
unit per clock cycle respectively.

The rest of this article are organized as follows. In Section 2, we describe the GPU’s
architecture and the design of the unified shader, rendering engine and texture engine.
Experiment results of the proposed GPU on Xilinx FPGA and SMIC 40nm technology are
presented in Section 3. We summarize the paper with a conclusion in Section 4.

2. Unified Architecture GPU Design

2.1 Unified Shader

The block diagram of the unified architecture GPU designed is shown in Figure 2. It
mainly includes command processor, unified shader, rendering engine, texture engine and pixel
engine. The communication and synchronization between each module is based on the valid-
ready protocol. The data buffer is designed for each module to improve the throughput. The
whole graphics computing pipeline is compatible with single-precision floating point IEEE 754
standard to guarantee the precision. The asynchronous FIFO is used for signals cross the clock
domain. In this article, we focus on the design of the unified shader, rendering engine and
texture engine because they are the key modules in graphics processing pipeline.

Figure 2: Unified Architecture GPU

Command processor controls the whole graphics pipeline. Application program written in
the graphics API such as OpenGL is analysed and compiled to generate GPU command of the
driver. The command is stored in the command buffer, and vertex information is stored in the
vertex buffer. When the graphics pipeline starts to execute, data and command are read into
GPU and further analysed to control the whole pipeline by the command processor.

Unified shader executes vertex and fragment shading programs, and designates the
processing unit dynamically to secure the load balancing. In our design, the unified shader is
based on SIMT combined with SIMD architecture to make the best use of the hardware units.
On the thread level, SIMTOn the instruction level, SIMD controls the execution of the unified
shader hardware unit.

3

Processing
elements

Common register

Constant register

Texture engine

Thread scheduling and management

Vertex buffer

Command processor

Rendering engine

Interconnect bus

Pixel
engine

DDR3 SDRAM

Command
buffer

Processing
elements

Common register

Constant register

Texture engine

……

Pixel
engine ……

P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
7
9

Designing a Unified Architecture Graphics Processing Unit Lingjuan Wu

The unified shader consists of 128 hardware units called processing element (PE). Four PE
units constitute one SIMD unit, and eight SIMD units form one block processor. In this paper,
we take the GPU with four block processors as an example, though the GPU can definitely
integrate more block processors for higher computing capability. Each block processor can
execute 2048 threads in parallel, and these threads are divided into 64 groups with each group
including 32 threads. The thread scheduling and management module controls the thread
execution. For example, when one thread is stalled, its state information will be stored and
another thread will start to execute.

In SIMT design, threads are scheduled and managed by group. The context information for
each thread group is saved during scheduling and mainly includes group number, common
registeration starting address and program address. There are 64 thread groups and the block
processor chooses one group to execute. The thread group assigned earlier has higher priority.
And one instruction execution takes four clock cycles. The 32 threads in one group execute the
same instruction stream from the same address. The instruction is vertex or fragment processing
program. But during execution each thread runs independently with its specific registeration
space. The block processor reaches the maximum performance when all the threads in one
group have the same path.

On the instruction level, thread is executed by SIMD, and four hardware units execute the
same instruction. In graphics processing, the attribute of vertex or fragment contains four
components which are computed by the four hardware units in SIMD. For example, the
component of position is XYZW, then the color is RGBA.

Based on the architecture and algorithm described above, we finish the unified shader RTL
design. The unified shader is programmable and includes a four-stage pipeline: IF, ID, EX, WB.
And its instruction set includes forty instructions and mainly includes arithmetic, control,
lighting and texture mapping. Each instruction is 128 bit and the operation code is 5 bit.
Hardware module is mainly composed of instruction fetch unit, decoder, address generator,
operand fetch unit, registeration, ALU, control unit and output registeration. The instruction
fetch unit read vertex and fragment processing commands from memory. After instruction
decoding, source and destination operand address are generated in the address generator. Then
source operand fetch unit read data from constant, temporary or input register. According to the
operation code, ALU performs arithmetic operation such as adding, multiplying and multiply-
adding. Transcendental function unit (TFU) carries out complex mathematics computation such
as trigonometric function, exponential, reciprocal and etc. TFU is designed based on the
homogeneous polynomial approximation and look-up table algorithm. Control unit implements
call, branch or loop operation. Finally, the output results are written back to the output
registeration.

2.2 Rendering Engine

Rendering engine accepts vertices from the unified shader, generating fragments within
each primitive and computing the attribute of each fragment. It mainly includes primitive
assembly, clip, setup, fragment generation and interpolation as shown in Figure 3. In the design,
primitive type of point, line list, line strip, triangle list, triangle strip and triangle fan are
supported.

4

P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
7
9

Designing a Unified Architecture Graphics Processing Unit Lingjuan Wu

Figure 3: Rendering Engine Design

Graphics scenes are built based on the basic primitives, and each scene contains numerous
primitives. Each primitive consists of many fragments depending on its geometry size.
Therefore, the computation capability and speed of rendering engine are two key factors in the
whole graphics pipeline. In order to achieve the real-time graphics computing, we need to
compromise between algorithm and hardware complexity.

Primitive assembly module assembles vertices into primitive depending on the primitive
type. For example, two vertices are assembled to a line and three vertices are assembled to a
triangle. After assembling, the basic unit is primitive in the following graphics pipeline. Culling
and clipping are performed for each primitive. First, primitives that are outside of the view
frustum are culled. And then the remaining primitives with vertex outside of the frustum need to
be clipped. During clipping, new vertices are generated on the boundary of the view frustum
and then new primitives are built.

Cohen-Sutherland algorithm is explored to evaluate the geometrical relationship between
each primitive and the view frustum [9]. Since the vertex’s coordinate is a four dimensional
homogeneous coordinate (x,y,z,w) in the clip space, the view frustum is defined by the fourth
coordinate w. We define 6-bit region code to represent the comparison result of {z>w, z<-
w，y>w, y<-w, x>w, x<-w}, the vertex is outside of the corresponding boundary when the
result is 1. On the contrary, the vertex is inside the boundary when the result is 0. For example,
000000 means the vertex is inside the view frustum and 100000 means the vertex is outside of
the far-z boundary.

Based on the region code, we take triangle as an exampl. If its three vertices are all outside
the view frustum, the triangle should be culled, and if one or two vertices are outside of the view
frustum, the triangle should be clipped and new vertex will be generated to from a new triangle.
The equation for calculating the new vertex’s attribute is

C=tC0+(1−t)C1 (2.1)

where C represents the component of each attribute, for example, the four components of

color RGBA. C0 C1 is the component of the two vertices which form one edge of the triangle that

intersects with the boundary. After primitive assembly and clipping, the coordinate of each
vertex in the primitive is transformed to the normalized device coordinate and finally to the 2D
window coordinate.

The setup module makes preparation for rasterization by calculating the initial point and
direction. It mainly includes control and data path module. As the vertex coordinate is in a 2D
window space, clipping is further performed for each primitive based on the resolution

5

primitive
assembly

cull/chip

setup

fragment
generation

depth/stencil
test

interpolation

Z/Stencil
buffer

Rendering engine

Unified
shader

vertex

fragment

P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
7
9

Designing a Unified Architecture Graphics Processing Unit Lingjuan Wu

information such as 1920x1080. Primitives that have vertex outside of the window are clipped
to further confine the area of rasterization.

The rasterization module calculates the attribute of each fragment and mainly includes
fragment generation and interpolation. First of all, we scan the fragment from the initial point,
and then use edge equation to check whether the fragment is inside the primitive. If the
fragment is inside, we calculate the fragment’s attribute, otherwise we move to the next
fragment in the rasterization direction. Linear interpolation algorithm is explored to compute
each fragment’s arrtibute.

Each fragment may have 12 attributes at maximum and each attribute has 4 components.
Thus, parallelled hardware computation is explored in our design to improve the speed as shown
in Figure 4. Primitives are classified as odd and even and rasterized in parallel. Furthermore, the
depth and stencil test is performed for each fragment to delete the invalid fragment in early
stage.

Figure 4: Parallel Rsterization Module

2.3 Texture Engine

Texture engine accepts fragments from the unified shader and performs texture mapping
for each fragment. The texture engine we designed mainly includes four components as shown
in Figure 5: controller, texture address generator, format converter and texture cache. There are
sixteen texture engine units working in parallel in GPU.

Figure 5: Texture Engine Design

6

input buffer

FIFO

AFIFO

rasterization
module

mux2 output
control

input control

output buffer

input

output

AFIFO

FIFO

FIFO

AFIFO

rasterization
module

AFIFO

FIFO

Input buffer

Texture
address

generator

Texture
mipmap

computing

Texture cache

Filtering and
interpolator

Output buffer

Format
converter

Request
control

SDRAM
controller

Texture
engine

controller

P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
7
9

Designing a Unified Architecture Graphics Processing Unit Lingjuan Wu

Controller orchestrates the texture engine. As we mentioned above, each fragment may
have 12 attributes and one attribute is texture coordinate (s,t,r,q). The address generator module
calculates the address of the corresponding texture data in SDRAM from (s,t,r,q). The texture
mapping area is not always the same as the texture in SDRAM. For example, if the mapping
area is much bigger, up-sampling is needed, otherwise, down-sampling is needed. Therefore,
mipmap technique is explored, in which textures of different sizes are stored in SDRAM and the
one which has the approximate area with the mapping area is used to improve speed and
precision. In our design, 13 level mipmap is supported and the maximum texture resolution is
4kx4k.

The texture data of different materials is stored in SDRAM and compressed to save
memory. In texture mapping, texture data read out from SDRAM are converted to ARGB8888
data format. The format converter module supports various compressed format such as
ARGB1555, YUY2, YV12 and etc.

A cache is designed to save texture data read out from SDRAM after format converting.
The cache size is 2KB and contains 32 cache lines. Considering the locality characteristic of the
texture data, a tile-based method is explored in cache design. Each tile contains a 4x4 texel,
where texel is the unit of texture data and is 32bit. In our design, each cache line is 64Byte, and
can store one tile. Furthermore, each cache line is divided into four banks. Each bank is 128bit,
and in turn can store 4 texel, as shown in Figure 6. Thus, if the texture coordinate is located
among four texels in one tile, we can read out the four texel data at the same time. The reason is
that each bank can be read and written separately. Otherwise, if the texture’s coordinate is
located among different tiles, different cache lines are read to get the texel data. Finally, the
texel data read out from the cache is interpolated and filtered to generate the texture data for
each fragment.

Figure 6: Texture Cache Design

3. Experiment Results

We finished the design of the unified architecture GPU with the top-down methodology.
Base on the architecture and algorithm described, we finished the GPU Verilog RTL design and
and developed the OpenGL 2.0 subsystem driver. The proposed GPU was implemented on
Xilinx Vertex7 FPGA to evaluate its performance.

Various OpenGL 2.0 programs are tested. The hardware verification platform of GPU and
some of the results are shown in Figure7. In Figure7(a) and Figure7(b), GPU draws a cube and
gears respectively, and the object rotates when viewport is changed by pressing specific buttons

7

bank0 bank1 bank2 bank3

texel texel texel texel texel texel texel texel texel texel texel texel texel texel texel texel

texel texel texel texel texel texel texel texel texel texel texel texel texel texel texel texel

P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
7
9

Designing a Unified Architecture Graphics Processing Unit Lingjuan Wu

on the keyboard. In Figure 7(c), GPU draws a cube and does texture mapping on each face of
the cube. We also run a game for comprehensive testing of GPU as shown in Figure7(d). The
results show that the proposed GPU performes 3D graphics computing correctly.

(a)

Figure 7: Verification of GPU on FPGA

Furthermore, we use Vivado to collect the GPU hardware signal. As shown in Figure 8
signal cycle[3:0] represents the thread number while each thread is one program for vertex or
fragment processing. The value of cycle [3:0] switches per clock cycle, which means GPU has
the capability of processing one vertex or fragment per clock cycle.

Figure 8: GPU Hardware Simulation Result

We further synthesize the Verilog HDL code under the SMIC 40nm technology node. The
synthesis results show that the core frequency of the proposed GPU reaches 600MHz, which
means that GPU vertex or fragment processing speed is 600M/s. We also finish the layout
design, and the silicon area is about 7.5mm*7.5mm.

To the best of our knowledge, the unified architecture is the mainstream in the GPU
design. Sun designed a unified architecture shader GPU with its core frequency and vertex
processing speed 400M, 300M/s [10]. And the core frequency and vertex speed is 200M, 50M/s
in the GPU Sohn proposed [11]. In industry, Nvidia adopts SIMT architecture and the core
frequency reaches 1178M in Geforce GTX 960. And AMD adopts SIMD architecture and the
core frequency reaches 1050M in Radeon R9. Commercial GPU products improve the speed by
integrating the numerous computing units.

The GPU we proposed is based on SIMT combined with SIMD architecture. And the
speed reaches 600M. There are 128 PE units in the unified shader, 16 texture engine units and 8
pixel engine units. More hardware units can be integrated in the GPU to improve the speed. In
conclusion, we expect higher speed when more computing units are integrated in the proposed
GPU.

4. Conclusion and Future Work

In this paper, we present the design and implementation of a unified architecture GU. And
we mainly introduce the designing of the unified shader, rendering engine and texture engine
because they are the key modules in the graphics pipeline. The GPU is designed with the top-

8

P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
7
9

Designing a Unified Architecture Graphics Processing Unit Lingjuan Wu

down methodology and Verilog HDL code is provided. The verification results on FPGA show
that the proposed GPU works correctly, and the vertex and fragment processing speed reaches
one unit per clock cycle. In the future, more computing units will be integrated in the GPU to
improve computing capability and speed.

References

[1] C.J.Thompson, S.Hahm, M.Oskin. Using modern graphics architecture for general-purpose
computing: a framework and analysis[C], IEEE/ACM International Symposium on
Microarchitecture, 2002:306-317

[2] J.D.Owens, D.Luebke, N.Govindaraju,M.Harris, J.Kruge. A survey of general-purpose computation
on graphics hardware[J], Computer Graphics Forum, 2007, 26(1):80-113

[3] T.D.Han, T.S.Abdelrahman. hiCUDA: high-level GPGPU programming[J], IEEE Transactions on
Parallel and Distributed Systems, 2011, 22,(1):78-90

[4] V.M.Barrio, C.Gonzalez, J.Roca, A.Fernandez. ATTILA: a cycle-level execution-driven simulation
for modern GPU architecture, in Proc. International Symposium on Performance Analysis of
System and Software[C], 2006:231-241

[5] E.Lindholm, J.Nickolls, S.Oberman, J.Montrym. Nvidia Tesla: a unified graphics and computing
architecture[C], IEEE Micro, 2008:39-55

[6] V.Moya, C.Gonzalez, J.Roca, A.Fernandez, R.Espasa. Shader performance analysis on a modern
GPU architecture[C], MICRO2005

[7] A.Maashri, G.Sun, X.Dong, V.Narayanan, Y.Xie. 3D GPU architecture using cache stacking:
performance, cost, power and thermal analysis[C], in Proc.International Conference on Computer
Design (ICCD), 2009

[8] J.Han, L.Jiang, H.Du, X.Cao, L.Dong, L.Meng. Hardware accelerator and 3D pixel shader
architecture for computer graphics[J], Journal of Computer-aided Design Computer Graphics, 2010,
22(3) :363-372

[9] B.Jiang, J.Han. Improvement in the Cohen-Sutherland line segment clipping algorithm[C], IEEE
International Conference on Granular Computing, 2013:157-161

[10] G.Sun. Design and research of unified atchitecture shader based on automatic threading and
vliw[D], Hangzhou: Zhejiang Univeristy, 2012 (In Chinese)

[11] J.Sohn, J.Woo, M.Lee, H.Kim, A 155mw 50-mvertices/s graphics processor with fixed-point
programmable vertex shader for mobile applications[J], IEEE Journal of Solid-State Circuits, 2006,
41(5):1081-1091

9

	1. Introduction
	2. Unified Architecture GPU Design
	2.1 Unified Shader
	2.2 Rendering Engine
	2.3 Texture Engine

	3. Experiment Results
	4. Conclusion and Future Work

