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1. Introduction  

The Analytic Hierarchy Process (AHP) [1] has been widely applied as a qualitative and 

quantitative decision-making tool. A successful decision on making process requires the 

judgment matrix to be consistent. If a judgment matrix fails to fulfill the requirements of 

consistency, then the weight obtained from the judgment matrix can not be utilized as the 

basis for making decision. In that case, certain adjustments on the matrix will be further 

required; therefore, the problem of consistency correction becomes an important research 

content in the AHP. With the presentation of AHP, there have been rich literature focusing on 

the consistency correction research. Ma and Xu [2] proposed a weighted arithmetic mean 

correction method and two criteria for correction validity. Xu and Wei [3] proposed a 

weighted geometric mean method. The weighted arithmetic mean and weighted geometric 

mean method were analyzed and compared in [4]. Xu [5] proposed a weighted arithmetic 

mean and weighted geometric mean method by analyzing the maximum deviation in the 

judgment matrix.  Some authors proposed the vector correction method and perturbation 

matrix correction method[6-9]. The consistency of the judgment matrix, the fuzzy judgment 

matrix and the intuitionistic fuzzy judgment matrix are rectified by the deviation matrix and 

the vector method [10]. Based on the accelerated genetic algorithm, two kinds of NLP model 

correction methods were proposed in [11]. Bayesian correction method, Hadamard product 

induced bias matrix (HPIBM) method and the graph theory correction method were proposed 

in [12-13]. We have proposed a new algorithm for the consistency test of judgment matrix 

based on probabilistic statistics and hypothesis testing [14]. Based on the said literature, two 

new methods for the consistency correction of the judgment matrix based on the convex 

combination of perturbation deviation matrix are presented hereof to further verify the new 

methods and make comparison with the traditional AHP. 

2. Preliminaries 

Definition 2.1 [14] Let ( ) qpijaA ×= and ( ) qpijbB ×= be a matrix, if =BA*  ( ) qpijc ×  is 

satisfied,  the product of BA∗ is called the Hadamard product of matrix, where 

ijijij bac ∗= and∗  refer to the Hadamard product symbol. 

Definition 2.2[14] Let ( )
nnijaA

×
= be a judgment matrix and the eigenvector 

corresponding to the largest eigenvalue maxλ is [ ]Tnwwww ,...,, 21= ,then the matrix 

( )
nnijwA

×
= is called the characteristic matrix of ( )

nnijaA
×

= ,where
j

i
ij w

ww = , { }nji ,...,2,1, ∈ . 
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Definition 2.3 [14] Let ( )
nnijaA

×
= be a judgment matrix, if EAA ∗= ,then E is called 

perturbation matrix of A ,where nnijE ×= )(ε . 

Definition 2.4 Let nnijE ×= )(ε be a perturbation matrix of A ,then     

 (i) If an element ijε in E satisfies 01≠−ijε , then{ } nnij ×ε is called perturbation deviation 

matrix,denoted as D ;               

 (ii) If an element ijε in E satisfied 01=−ijε ,then{ } nnij ×ε is called perturbation zero 

deviation matrix,denoted as 0D .            

Theorem 2.1 If the judgment matrix A satisfies EAA ∗= ,then A is a completely 

consistent matrix if and only if 
















==

111

111
111

0







DE .       

Proof. Sufficiency: As A is the characteristic matrix of A , A satisfies the complete 

consistency, and the perturbation matrix 0DE = ,according to the Hadamard product 

definition, we know A satisfies the complete consistency.        

Necessity: If A satisfies the complete consistency and A also satisfies the complete 

consistency, according to the Hadamard product definition,so we know 0DE = .  

Definition 2.5 Let D and 0D be the perturbation deviation matrix and the perturbation 

zero deviation matrix respectively,and the convex combination of D and 0D can be expressed 

as 0)1( DDD λλ −+= , then )1( λλεε −+= ijij , ijji εε /1= ,where, 10 ≤≤ λ .   

 Theorem 2.2 [9] Let inconsistency judgment matrix A be rectified as DAA =′ ,if 

( )D
n

j
ij

i
max

1
max λε ≤








∑
=

,then )()( maxmax AA λλ <′ .        

 Definition 2.6 [14] Let )1(/2
0

2
1 −− nnpσχ be a critical value of the consistency 

index,which is called the Chi- Square Consistency Index(brieflyCSCI ).                                                                          
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Order 3 4 5 6 7 8 9 

p=0.01 0.010 0.036 0.064 0.087 0.106 0.121 0.134 

p=0.05 0.029 0.068 0.099 0.121 0.138 0.151 0.162 

p=0.10 0.049 0.092 0.122 0.138 0.158 0.169 0.178 

Order 10 11 12 13 14 15 16 

p=0.01 0.144 0.153 0.160 0.166 0.172 0.177 0.181 

p=0.05 0.170 0.177 0.183 0.188 0.192 0.196 0.199 

p=0.10 0.185 0.191 0.196 0.200 0.204 0.207 0.210 

 Order 17 18 19 20 21 22 / 

p=0.01 0.185 0.189 0.191 0.194 0.197 0.199 / 

p=0.05 0.202 0.205 0.207 0.209 0.211 0.213 / 

p=0.10 0.212 0.214 0.216 0.218 0.219 0.221 / 

Table 1: Critical Value of CSCI  

If ( ) ( ) RInn 1.01/max <−−λ ,then the matrix through the consistency test;otherwise,not 

through the consistency test [1].Where, =CI  ( ) ( )1/max −− nnλ ,and 0.1RI is a critical value 

for CI to test the consistency of the judgment matrix.In this paper,we present CSCI as 

proposed in [14] as a new critical value of ( ) ( )1/max −− nnλ to test the consistency of the 

judgment matrix.                                                                                                                              

Table 2:  Critical Value of RI and CI [1] 
3. A new algorithm for consistency correction 

It is proposed to replace ijd in the perturbation matrix with )1( γγ −+ijd ,and the 

Hadamard product ∗)/( ji ww )]1([ γγ −+ijd is used as the correction result of the element in 

the original matrix[9].However, considering there are too many elements for each correction 
in [9],it is difficult to maintain the information in the original matrix. In this paper, we 
propose a consistency correction method, which is easy to maintain the information in the 
original matrix.   

    Let )( ijaA = be an nn× judgment matrix, k be the number of iterative times, and 

the specific steps are as follow:             

 Step 1: Let ( )0)0(
ijaA = , ( )1,0∈θ , and k =0.         

Order 3 4 5 6 7 8 9 
RI 0.58 0.90 1.12 1.24 1.32 1.41 1.45 

CI=0.1RI 0.058 0.090 0.112 0.124 0.132 0.141 0.145 
Order 10 11 12 13 14 15 / 

RI 1.49 1.51 1.48 1.56 1.57 1.59 / 
CI=0.1RI 0.149 0.151 0.148 0.156 0.157 0.159 / 
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Step 2: Calculate the maximum eigenvalue )(
max
kλ of )(kA and the priority vector 

( ) ( ) ( )( )Tk
n

kkk wwww ,...,, 21
)( = .  

Step 3: If ( )( ) ( ) CSCInnk <−− 1/maxλ ,then go to Step 6; otherwise, go to next step. 

Step 4:                  
 (i) (Method 1)                

 Normalize all columns of ( )kA ,then get the normalized matrix ( ) ( ) ( ) ( )),,,( 21
k

n
kkk aaaA = , 

in which, refers to the column vector of ( )kA . Calculate the cosine value of the included 

angle between ( )kw and ( )k
ia , namely

( ) ( )( )
( ) ( )k

i
k

k
i

k
k

i
aw
aw ,cos )( =θ .  

Then determine t  so that }{cosmincos )()( k
i

i

k
t θθ = , and let ( ) ( ) ( )k

ij
k

j
k

i
k wwA ε∗=+ )()(1 / , 

where 

                      










≠

=
−+

=−+

=

tji

ti

tj

k
ij

k
tj

k
it

k
ij

,,

,
)1(

1
),1(

)(

)(

)(

)(

ε
θθε

θθε

ε  

(ii) (Method 2)               

 Let ( ) ( ) ( ) ( )( )k
i

k
j

k
ij

k
ij wwa /=ε and determine qp, so that ( ) ( ){ }k

ij
ji

k
pq εε

,
max= . Let 

( ) ( )∗=+ )()(1 / k
j

k
i

k wwA )(k
ijε , where                       

                   ( )

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )








≠

=
−+

=−+

=

pqqpji

pqji

qpji

k
ij

k
pq

k
pq

k
ij

,,,,,

,,,
1

1
,,),1(

ε
θθε

θθε

ε  

Step 5: Let 1+= kk , and return to Step 2.  

Step 6: Output ( ) ( )kk wCIA ,,, maxλ , in which, refers to the correction matrix and refers to 

the vector of priorities. 
Step 7: End.                 

 The two criteria for measuring the proximity of the original matrix to the correction 
matrix are given in [2],as follows:                    

             ( ) ( ) ( ){ } Njiaa ij
k

ij
ji

k ∈−= ,,max 0

,
δ      

             ( ) naa
n

i

n

j
ij

k
ij

k /)(
1 1

2)0()(∑∑
= =

−=σ       
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 Usually we think that the smaller the value of ( ) ( )kk σδ , is,  the more information will 

be retained from the original matrix and the better correction will be achieved. 
4. Case analysis 

This paper chooses the Matrix A in [2] and rectifies it according to the above two 
methods, as follows: 

              


























=

12668574
2/115576/153
6/15/11244/13/16/1
6/15/12/1133/13/16/1
8/17/14/13/116/15/17/1
5/16436133/1
7/15/13353/115/1
4/13/1667351

A .                       

The perturbation matrix of the original judgment matrix is obtained as follows:       



























10014.16539.05591.04200.08230.21343.10775.2
9986.010884.19306.07340.01879.06182.11120.3
5292.19188.017100.19269.12951.14956.07942.0
7886.10746.15848.016903.10197.25796.09290.0
3809.23624.15190.05916.017923.16173.04132.1
3542.03280.57722.04951.05579.018610.03066.0
8816.06180.00178.27252.16200.11614.116411.0
4813.03213.02591.10766.17076.02612.35599.11

,

6689.9max ≈λ , 2384.0
1

max =
−
−

n
nλ

> CSCI ,w=(0.1730,0.0540,0.1881,0.175,0.0310,0.0363, 

0.1668, 0.3332) .                 
   When p=0.10, 5.0=θ , the correction result in Method 1 is:    



























=

19986.10000.69997.50005.85899.39998.69999.3
5000.019999.40004.50003.76617.00000.50000.3
1667.02088.010000.20000.42472.03333.01667.0
1667.01930.05000.010001.32688.03333.01667.0
1250.01239.02500.03333.011404.02000.01429.0
2000.05638.30004.49997.29995.510000.33333.0
1429.02618.00000.30000.30000.53524.012000.0
2500.06853.00000.60000.69998.60811.29998.41

)(kA ,

7633.8max ≈λ , 1090.0
1

max =
−
−

n
nλ

< CSCI=121.0 , ( )kw =(0.1832,0.0651,0.1289,0.0182, 

0.0326,0.0412,0.1954,0.3354), ( ) 4362.2=kδ , ( ) 2240.0=kσ .        

    When p=0.10, 5.0=θ , the correction result in Method 2 is:
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

























=

10000.20000.60000.60000.80000.50000.70000.4
5000.010000.50000.50000.71667.00000.50474.2
1667.02000.010000.20000.42500.03333.01667.0
1667.02000.05000.010000.33333.03333.01667.0
1250.01429.02500.03333.011667.02000.01429.0
2000.05486.10000.40000.30000.610000.33333.0
1429.02000.00000.30000.30000.53333.012000.0
2500.03333.00000.60000.60000.70000.30000.51

)(kA , 

8077.8max ≈λ , 1154.0
1

max =
−
−

n
nλ

< CSCI=121.0 , 

( )kw =(0.1829,0.0626,0.1258,0.0194, 

0.0342,0.0415,0.1793,0.3543), ( ) 4514.3=kδ , ( ) 4476.0=kσ . 

If 0.1RI in the traditional AHP is used as the critical value of 
1

max

−
−

n
nλ

, then the 

correction result in Method 1 is:  



























=

18752.19997.50003.69997.70000.50000.79999.3
5000.019999.40007.50001.71667.00000.50001.3
1667.02085.010000.20000.42500.03334.01667.0
1667.01776.05000.010001.33334.03333.01667.0
1250.01030.02500.03333.011667.02000.01429.0
2000.04626.10000.49997.29994.510001.33333.0
1429.03061.00002.39998.20001.53333.012000.0
2500.09136.09994.59998.50005.70001.30000.51

)(kA ,

9640.8max =λ , 1377.0
1

max =
−
−

n
nλ

<0.141=0.1RI, ( )kw =(0.1900,0.0626,0.1227,0.0182,0.032

8, 0.0294,0.1971,0.3472), ( ) 5374.4=kδ , ( ) 6497.2=kσ .       

 If 0.1RI in the traditional AHP is used as the critical value of 
1

max

−
−

n
nλ

, then the 

correction result in Method 2 is: 



























=

10001.29990.50006.60003.80000.50001.79999.3
5000.010000.50001.59995.61667.09999.40000.3
1667.02000.010000.20000.42500.03333.01667.0
1667.02000.05000.010000.33334.03333.01667.0
1250.01429.02500.03333.011667.02000.01429.0
1988.04755.10000.49997.29994.510001.33333.0
1429.02000.00000.30001.30002.53333.012000.0
2500.03334.00000.69999.50004.70001.39999.41

)(kA ,

9058.8max ≈λ , 1294.0
1

max =
−
−

n
nλ

<0.141= 0.1RI, ( )kw =(0.1784,0.0613,0.1239,0.0191, 

0.0337,0.0407,0.1950,0.3430), ( ) 5245.4=kδ , ( ) 5656.0=kσ .      
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 By contrast, it is found that the value of ( )kδ and ( )kσ  in the new correction method is 

smaller than the corresponding traditional correction method, so the new correction method is 
better.  

5. Conclusion 

In this paper, we studied the relationship between the perturbation matrix and the 
judgment matrix inconsistency, proposed two new methods of consistency correction based 
on the theory of perturbation deviation matrix. The element to be rectified are determined by 
the size of the disturbance element in the perturbation matrix and the size of the cosine 
between the vectors. Two new methods have been verified by the satisfied results. 
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