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The  Mean-Square-Error  (MMSE)  detection  achieves  near-optimal  performance  in  signal
detection for massive Multiple-Input-Multiple-Output (MIMO) systems. But MMSE detection
still  suffers from high complexity of matrix inversion. In this paper, an efficient and flexible
architecture  is  proposed  based  on  the  modified  version  of  the  Symmetric  Successive  Over
Relaxation (SSOR) method. A Reconfigurable Computing Array (RCA) is used to implement the
SSOR Method. In order to speed up the iteration, an initial solution is adopted. Approximated
LLRs computational method is used to scale down the computing load of Log-Likelihood Rate
computations. FPGA implementation results show a superior performance over the state-of-the-
art designs.
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1. Introduction

MIMO is a key technology in most modern wireless communication standards; however,
the  traditional  MIMO  systems  can  not  satisfy  the  increasing  requirements  for  data  rates,
spectral, link reliability and energy efficiency in the future wireless systems. Massive MIMO is
a very promising technique for the 5G wireless communications and it has been proved that the
massive  MIMO  provides  opportunities  to  achieve  the  ever  growing  demand  in  the  future
wireless systems.

Bringing the amazing benefits of massive MIMO faces a few challenges, one of which is
significantly increasing computational complexity by orders of magnitude in the base station.
Some optimal detection methods like Maximum Likelihood (ML) [1], K-Best [2] are able to
achieve  high  performance  in  data  detection.  Unfortunately,  the  problem  of  computational
complexity is  nonnegligible  when the  number  of  antennas  is  large.  Zero-Forcing  (ZF)  and
MMSE can achieve a tradeoff between the performance and complexity; however, the complex
matrix complexity is involved in MMSE detection. Recently, Neumann series (NS) method [3],
Conjugate Gradient (CG) method [4], [5], and Gauss-Seidel (GS) method [6], [7] were proposed
to achieve matrix inversion indirectly, but the reduction in complexity is not obvious because of
large iterative number.

In this paper, we describe a low-complexity data detection algorithm based on SSOR for
massive  MIMO  system  in  the  uplink.  Firstly,  we  focus  on  linear  soft  out  detection  in
combination with an optimized matrix inversion method based on SSOR algorithm. Then, we
propose a speed-up method in the SSOR method considering the initial solution of the iteration.
Finally, an approximated Log-Likelihood Rates (LLRs) computational method is proposed to
scale down the complexity. The simulation results show that the proposed algorithm achieves
higher detection accuracy when compared with the algorithm  as recently proposed. Based on
the  proposed  algorithm,  we  develop  an  efficient  and  flexible  VLSI  architecture  for  signal
detection in  massive MIMO systems.  In particular,  we propose a  reconfigurable  computing
array (RCA). Furthermore, different antenna configurations in massive MIMO system can be
achieved based on this flexible architecture of various configurations. The experimental results
of our design on a Xilinx Virtex-7 FPGA show that our design performs 3.43×, 2.84×, 1.71×
throughput per slice compared with the NS-based detector [3], CG-based detectors [5] and GS-
based detectors [7].

2. System Model

The massive MIMO (usually N >> M [6]) uplink system has N antennas at the base-station
(BS) to  simultaneously communicate  with  M single-antenna users.  The parallel  transmit  bit
streams of M users are encoded by utilizing channel encoders, and then, the results are mapped
to  constellation  symbols  to  get  a  sequent  of  transmit  vectors  s. Let  s denote  the  M ×  1
transmitted signal vector of all M users, and vector y stand for N × 1 that received signal at the
BS. We have:

= +y Hs n , (2.1)

where H∈CN×M stands for flat Rayleigh fading channel matrix whose elements are independent

and identically distributed (i.i.d.) and follow N  (0,1), and all elements of  n denote N ×1 i.i.d.

zero-mean complex additive white Gaussian noise (AWGN) whose power spectral density are

E(nHn) = N0I. Furthermore, we assume the power of transmitted vector is E(sHs) = EsI.
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According to H and y, the base station detector can compute soft-estimates in the form of
LLRs for s. The estimation of s in MMSE which is the most common can be computed as:

( ) 11 1
0

ˆ H H MF
s UN E

-- -= + =s H H I H y A y , (2.2)

where  A=G+N0Es
−1IU denotes  the  MMSE  filtering  matrix,  and  yMF=HHy,  G=HHH are  the

matched-filter vector and the Gram matrix. Let  U=A−1G  denotes the equivalent channel gain
and v=A−1HHn denotes the equivalent noise, combing (2.1) and (2.2), the MMSE estimation of
the transmitted vector can be rewritten as ŝ=Us+v .  As the matrix  U is  a non-diagonal
matrix, the estimation of transmitted symbol by MMSE for the ith users îs not only contains
the information of si but also includes the interferences of another sj (j≠i). In order to distinguish
the useful information and interference, each element of ŝ can be written as: 

ŝi=U i ,i si+ ∑
j=1, j≠i

M

U i , j s j+v i=U i ,i si+η i , (2.3)

where Uij presents the elements of matrix U in the ith and jth column, Uii is the effective channel

gain and η i=∑ j=1 , j≠i

M
U i , j s j+vi denotes the post-equalization Noise-Plus-Interference (NPI)

variance including interferences and noise. It is obviously that si and ηi are independent when

the streams are independent. Hence, the expectation of ηi is 0. Let
2
eqs denote the variance of ηi

and b be the bit index of the LLR of ith user. Then the max-log LLR can be expressed as:

Li ,b( ŝ i)=ς i
2(min

s∈S b
0

∣
ŝi
μi
−s∣2

−min
s∈S b

1

∣
ŝi
μi
−s∣2) , (2.4)

where
2 2 2/i ii eqUV s= is the signal-to-noise-plus-noise ratio (SINR) for  ith user, 0

bS and 1
bS

denote to the sets of modulation constellation symbols, where the ith bit is 0 and 1, respectively.
So the soft-output of MMSE detector could be exported. Unfortunately, the MMSE detection

consists  of  the  inversion  of  A,  which  results  in  an  excessive  complexity of  O  (M 3).  It  is

obviously that the detector needs a larger number of multiplications when M is large. Hence, the
practical  solutions  for  uplink  massive  MIMO detection  demand low complexity for  matrix
inversion.

3. SSOR-Based Signal Detection Method for Massive MIMO Systems

In this  section,  firstly,  an optimized SSOR iterative method is  used to  achieve matrix
inversion. Then, we propose a speed-up method of the SSOR method by using properties of
massive MIMO channel. Finally, an approximated Log-Likelihood Rates (LLRs) computational
method is proposed to scale down complexity.

3.1. Proposed SSOR-based Signal Detection Method

3.1.1. Optimized SSOR Method

In the massive MIMO systems,  the matrix  H is  asymptotically orthogonal;  hence,  the
matrix  G and matrix  A are Hermitian positive definite [6]. The SSOR-based signal detection
method is used to solve the linear equation, as shown in (2.2). According to the SSOR iteration,
we decompose the matrix  A into three parts:  A=L+D+LH,  in which  D,  L and  LH denote the
diagonal component, the strictly lower triangular component, and the strictly upper triangular
component of A respectively. Here the SSOR-based can be expressed as:

3
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(D+ω L) ŝ
(k +

1
2
)

=[(1−ω )D−ω LH ]ŝ(k)+ω yMF

(D+ω LH) ŝ(k +1)=[(1−ω )D−ω LH ] ŝ
(k +

1
2
)

+ω yMF

, (3.1)

where k = 0,1, ... is the number of iterations, (0)ŝ is the initial solution (discussed later in the

paper), ω is the relaxation parameter. To realize the iteration method in hardware efficiently,we
change the computing rule considering the definition of D and L, the iteration can be presented
as:

ŝi

(k+ 1
2
)

= ω
D i ,i

( y i
MF

−∑
j<i

Li , j ŝ j

(k +
1
2
)

+
1−ω
ω Di ,i ŝi

(k)
−∑

j>i

Li , j
T ŝ j

(k )
)

ŝi
(k+1)

= ω
D i ,i

( y i
MF

−∑
j<i

Li , j ŝ j
(k +1 )

+
1−ω
ω Di , i ŝ i

(k+
1
2
)

−∑
j>i

Li , j
T ŝ j

(k+
1
2
)

)

, (3.2)

where  Di,j and  Li,j denote the  ith row and  jth column of matrix  D and matrix  L, and ( )1ˆ k+
is ,

( )1/2ˆ k+
is , ( )ˆ k

is ,  and MF
iy denotes  the  ith  element  of ( )1ˆ k+s , ( )1/2ˆ k +s , ( )ˆ ks ,  and  and  yMF,

respectively.  According  to  (3.1.1.2),  the  optimized  SSOR  method  takes  full  advantage  of
information  of  the  whole  matrix  A.  Also,  all  the  computations  (vector  multiplications)  are
similar, indicating that the method can be implemented in hardware easily with high efficiency
and flexibility.

3.1.2. Speed-up

In order to improve the speed of  iteration, we consider the initial solution. If the initial
solution is nearby the exact final solution, the iteration number could be small. Hence, the next
task is to determine the initial solution, the traditional set as a zero-vector. For massive MIMO
systems, the Gram matrix G and matrix A are diagonally dominant, indicating that we have:

h i
H h j

N
→0, i≠ j , i , j=1,2,⋯,M , (3.3)

where  hi denotes  the  ith  column  vector  of  the  matrix  H.  The  domination  of  the  diagonal
elements of matrix  A is more and more obvious when the number of  N/M is increasing. By
analyzing the special properties of massive MIMO systems, a low complexity initial solution is
proposed as:

( )0 1
ˆ H

N
=s H y . (3.4)

The proposed initial method can speed-up the iteration obviously. The complexity of the initial
matrix is very low, so the computation can be calculated in parallel.

3.1.3. Approximated LLRs Computational Method

The equivalent channel matrix can be expressed as U = A−1G, the NPI variance σ eq
2 can

be computed like [3]:
2 2
eq s ii s iiE U E Us = - , (3.5)

which indicates that we need to compute the matrix U before the NPI and SINR computations.
According to (2.4) and (3.1.3.1), the SINR can be computed as:

( )
2

2
2

1

1 / 1
ii

i
eq s ii

U

E U
V

s
= =

-
. (3.6)

However, according to the definition of matrix U, we need to compute the inversion of matrix

A,  which suffers  from the complexity of  O  (M  3).  Since matrix  A is  diagonal  dominant  in
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massive MIMO systems. Inspired by (3.1.2.1) and (3.1.2.2), we can approximate the channel
gain matrix U, as:

1ˆˆ
N

-1U = A G = G . (3.7)

Combining  (2.4), (3.1.3.2)  and  (3.1.3.3), the  soft-output  LLRs  of  the  detector  can  be
approximately computed. The approximated computation of the LLRs avoids the large-scale
matrix multiplications and inversions, which can reduce the complexity.

3.2. Simulation Results

To evaluate the performance of the proposed SSOR-based algorithm, we simulate the BER
performance when compared with the NS, CG and GS methods, as shown in Figure 1. Nothing
that the exact MMSE algorithm with Cholesky decomposition [7] is also provided in this figure
to  be  the  reference  of  these  approximate  methods.  The  Rayleigh  fading  channel  model  is
provided. These simulation results show the proposed SSOR-based method can achieve much
more near-optimal performance in different antenna configurations when compared with other
algorithms. Hence, to achieve the same performance, the SSOR-based algorithm needs smaller
iterative number. For example, in Figure 1-(b),  the simulation result of  K=2 in SSOR-based
algorithm has almost the same BER performance of K=3 in NS-based algorithm.

(a) N=64, M=8 (b)   N=128, M=8
Figure 1: BER Performance Comparison between SSOR and Other Methods.

4. Reconfigurable VLSI Architecture

We propose a low complexity VLSI architecture based on the proposed SSOR detection
method. The overall architecture consists of a Reconfigurable Computing Array (RCA), which
is shown in Figure 2. The array can be reconfigured in order to compute the Gram matrix G =
HHH,  matched-filter  yMF=HHy,  initial  and  iteration  computations  of  vector  and  LLR
computation.

4.1. Reconfigurable Computing Array

In  the  RCA,  a  Finite  State-Machine  (FSM)  controls  the  date  memory,  configurable
memory,  interconnection  and  the  RCA.  The  main  blocks  of  the  RCA can  be  reconfigured
according to the SSOR method. In order to achieve high parallelism, there are 16 reconfigurable
computing unit (RCU) in the RCA. The input data can be stored into the data memory and the
configuration can be stored into the configure memory. The RCA can achieve the whole SSOR
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algorithm. In addition, for different antenna configurations in massive MIMO systems, the RCA
can be reconfigured  to achieve the signal detection.

4.2. Reconfigurable Computing Unit

The reconfigurable computing unit  includes four real-real  multipliers,  four adders,  two
accumulations, one subtracter, and three multiplexers, as shown in Figure 3. Each RCU supports
one  complex  multiplication  accumulation,  one  complex  multiplication  or  two  conjugate
complex multiplication accumulations. For different steps of the SSOR algorithm, the RCU can
be reconfigured in order to achieve different functions. According to different configurations,
the outputs are selected from three kinds of values, including the real-real multiplication results,
the accumulated results and the addition results with parameters. In order to support the SSOR
method, each RCU supports the following elementary operations: matrix-matrix multiplication,
matrix-vector multiplication, initial solution and iteration and LLR computation.

Figure 2: Reconfigurable Computing Array for
SSOR-based Soft-output Signal Detection.

Figure 3: Reconfigurable Computing Unit for
SSOR-based Soft-output Signal Detection.

For the Gram matrix computation, all the RCUs are reconfigured to achieve the matrix
multiplication. In each RCU, there are three main steps. Firstly, the real-real multiplications are
achieved. Secondly, the results are transmitted to accumulations. Finally, in order to get  Matrix
A, the outputs of each accumulation are added with a parameter N0Es −1. The matched-filter also
can  be  computed  based  on  the  RCU.  The  matched-filter  computation  is  a  matrix-vector
multiplication, and the accumulation results are exported. In the initial solution and iteration

computations, each element of the vector ŝ is computed in each RCU. The times of iterations

can be controlled by the FSM according to the configurable memory. The results are exported
from accumulations. Considering the LLR computation, the results are related to the SINR and a
piecewise linear function for Gray mappings. In each RCU, only two real-real multipliers and
some other lookup tables (LUTs) can be used to achieve LLR computation.

5. Experimentation Results and Conclusion

We implemented our SSOR-based massive MIMO detector for a 128×8 system on a Xilinx
Virtex-7 XC7VX690T FPGA to achieve a fair comparison with NS detector [3], CG detector [5]
and GS detector [7]. Table 1 compares the FPGA implementation results of the proposed SSOR-
based detector with other detectors. From Table 1, the SSOR-based implementation has a lower
throughput  but  consumes  much  smaller  hardware  resources.  Hence,  the  ratio  of
throughput/slices in the proposed detector is 3.43× [3], and 2.84× [7]. In addition, compared
with CG-based detector [5], this detector can achieve a better throughput/slices (1.71×).

6



P
o
S
(
I
S
C
C
 
2
0
1
7
)
0
5
5

Efficient and Flexible VLSI Architecture for Soft-Output Massive MIMO Detector                         Qiushi Wei

Inversion method NS GS CG SSOR

LUT slices 168125 18976 3324 3292
FF slices 193451 15864 3878 3456
DSP48 1059 232 33 36

Frequency [MHz] 317 309 412 314
Throughput [Mb/s] 603 48 20 32

Thoughput/s lice s
[Mbps/K s lices]

1.67 1.38 2.78 4.74

Table 1: FPGA Implementation Results
In this paper, we proposed an efficient and flexible VLSI architecture for SSOR-based

soft-output massive MIMO detection. An initial solution method is proposed to speed up the
iteration and a low complexity LLR computation method is proposed. It has been demonstrated
that  the  proposed  VLSI  architecture  is  suitable  for  different  SSOR  iterations  and  antenna
configurations.  The FPGA implementation results  show advantages on throughput per slice.
Future  work  will  focus  on  the  development  of  the  reconfigurable  coarse-grain  hardware
architecture to achieve high area and energy efficiencies in uplink massive MIMO systems.

References

[1] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong, and J. C. Zhang, “What will
5G be” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065–1082, Jun. 2014.

[2] M. O. Damen, H. El Gamal, and G. Caire, “On maximum-likelihood detection and the search for the
closest lattice point,” IEEE Trans. Inf. Theory., vol. 49, no. 10, pp. 2389–2402, Oct. 2003.

[3] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, 
“Scaling up MIMO: Opportunities and challenges with very large arrays,” IEEE Signal Process. 
Mag., vol. 30, no. 1, pp. 40–60, Jan. 2013.

[4] D. Auras, R. Leupers, and G. H. Ascheid, “A novel reduced-complexity soft-input soft-output MMSE
MIMO detector: Algorithm and efficient VLSI architecture,” in Proc. IEEE Int. Conf. Commun. 
(ICC), Sydney, Australia, Jun. 2014, pp. 4722–4728.

[5] B. Yin, M. Wu, J. R. Cavallaro, and C. Studer, “VLSI design of largescale soft-output MIMO 
detection using conjugate gradients,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2015, 
pp. 1498–1501.

[6] L. Dai, X. Gao, X. Su, S. Han, Z. Wang, “Low-Complexity Soft-Output Signal Detection Based on 
Gauss-Seidel Method for Uplink Multi-User Large-Scale MIMO Systems,” IEEE Trans. Veh. 
Technol., vol. 64, no. 10, pp. 4839–4845, Oct. 2015.

[7] Z. Wu, C. Zhang, Y. Xue, S. Xu, and X. You, “Efficient architecture for soft-output massive MIMO 
detection with Gauss-Seidel method,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2016, 
pp. 1886–1889.

7


