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From Scatter-Free to Diffusive Propagation of
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M.A. Malkov∗

University of California, San Diego
E-mail: mmalkov@ucsd.edu

Propagation of energetic particles through magnetized turbulent media is reconsidered using the
exact solution of Fokker-Planck equation. This solution reveals that our understanding of cosmic
ray (CR) transport is inaccurate when it relies on a diffusive approximation for weakly scattered
energetic particles. The poor understanding of CR transport obscures their sources and accelera-
tion mechanisms. After the Fermi, PAMELA, and AMS-02 have discovered the electron/positron
and p/He spectral anomalies, it becomes crucial to improve transport models for improving our
understanding of the anomalies. We discuss and simplify the exact solution of Fokker-Planck
equation [1] which accurately describes a ballistic, diffusive and transdiffusive (intermediate be-
tween the first two) propagation regimes. It is found that the transdiffusive phase lasts for a
(surprisingly) long time, about five scattering times (5tc) while starting as early as at 0.5tc. Since
the scattering time of CRs is energy dependent, tc = tc (E), a significant part of their spectrum
propagates transdiffusively, thus requiring the exact solution of Fokker-Planck equation.This lim-
itation is particularly relevant to the heliospheric modulation of galactic CRs. We present a new,
simplified version of an exact Fokker-Planck propagator. It can easily be employed in place of the
Gaussian propagator, currently used in major solar modulation and other CR transport models.
Flaws in using the telegraph equation to model the CR propagation before the onset of diffusive
regime are also briefly discussed.
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1. Lacuna in CR Transport Model

The cosmic ray (CR) propagation in turbulent environments, such as the interstellar medium
(ISM) or Heliosphere, has been actively researched for a long time [2]. Time asymptotically,
CRs propagate diffusively; after several collisions, they “forget” their initial velocities and enter a
random walk process. However, in astrophysical objects with infrequent particle collisions, there
may not be enough time or room for even a few collisions. In such systems, the focus shifts to
earlier propagation phases, which are better described as ballistic rather than diffusive propagation.
The question is, what is in between these two regimes and how long it lasts?

The transition from ballistic to diffusive transport regime has always been a challenge for the
theory. At the same time, it is often the key to understanding the CR sources. Since the particle
mean free path (m.f.p) usually grows with energy, some part of their spectrum almost inescapably
falls into a transient category where neither ballistic nor diffusive approximation applies. We will
call this regime transdiffusive and demonstrate that it lasts for long enough to compromise both the
ballistic and diffusive model predictions. During this propagation phase, CR protons accelerated in
supernova remnants (SNR), for example, may reach a nearby molecular cloud, making themselves
visible by interacting with its dense gas. The CR protons of lower energies would instead be
diffusively confined to the SNR shell and evade detection. Another example is the propagation of
solar energetic particles to 1 AU. Also, in this case, the m.f.p. is comparable to, or even exceeds, 1
AU, so neither the diffusive nor ballistic approximation applies.

Galactic CRs ultimately propagating through the Heliosphere to the observer cannot always
be propagated back to their source within simple diffusion or ballistic paradigms, so their spectra
cannot be fully understood. This problem is particularly relevant to striking anomalies in the CR
spectra and composition, which are becoming a general trend in the CR observations. Besides the
e+/e− anomaly, there is a ∼ 0.1 difference in rigidity indices of proton and He. Although the
explanations are available (see, e.g., [3, 4], and the paper by Hanusch et al. in the Proceedings),
the low-energy parts of these spectra are strongly affected by the solar modulation. Curvature
and gradient drifts in the Heliospheric magnetic field are mostly treated by considering particle
propagation along the field line as diffusive which we will show to be inaccurate for sufficiently
energetic particles with long m.f.p.

2. Governing Equation

The Fokker-Planck (FP) equation is a minimalist model suitable for the CR transport. An
ambient magnetic field justifies a 1D treatment, while its fluctuating part supports the particle
scattering in pitch angle. The simplest FP equation for the CR distribution f reads:

∂ f
∂ t

+ vµ
∂ f
∂x

=
∂

∂ µ
(
1−µ2)D(µ,E)

∂ f
∂ µ

. (2.1)

Here x is directed along the local magnetic field, µ is the cosine of the particle pitch angle, v,E are
the particle velocity and energy, conserved in interactions with quasi-static magnetic turbulence. D
is the scattering rate (collision frequency).

One propagation scenario that Eq.(2.1) describes very well comes about through an instant
release of a cloud of particles into a scattering medium. Again, Galactic SNRs, widely believed
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to generate CRs with energies up to ∼ 1015eV, must accelerate them in SNR shock waves with a
subsequent release into a turbulent ISM. The question then is how exactly the particle density (the
isotropic component of f ) propagates along a magnetic flux tube that intersects the SNR shell. Our
goal is to achieve the simplicity of diffusive description [2] which is a well-known derivative of
Eq.(2.1). As emphasized earlier, the diffusive treatment is inadequate in the preceding ballistic and
transdiffusive propagation phases, while the latter is often the key for probing into the source.

2.1 Restricting Propagation Models by Limiting Cases

Because of the difficulties in reducing the FP equation to a manageable isotropic form, it is
useful to set a framework for such reduction by the two limiting cases of ballistic and diffusive
propagation. We derive both regimes directly from Eq.(2.1), by eliminating angular dynamics.

In the ballistic case, which strictly applies to times shorter than the collision time t ≪ tc ∼ 1/D,
one can neglect the r.h.s. altogether. The solution then follows from an integration along the
particle trajectories, x − µvt = const (Liouville’s theorem), with a conserved pitch angle, µ =

const. The solution is simply f (x,µ, t)= f (x− vµt,µ,0). Now, consider an isotropic point source:
f (x,µ,0) = δ (x)Θ

(
1−µ2

)
/2, where δ and Θ denote the Dirac’s delta and Heaviside unit step

functions, respectively. From the above solution for f (x,µ, t), one obtains the ballistic expansion
in form of the second moment,

⟨
x2
⟩
= v2t2/3 by integrating x2 f = x2δ (x− vµt)Θ

(
1−µ2

)
/2

over x and µ . The result describes a free escape with the mean square velocity v/
√

3, while the
maximum particle velocity (along x) is v. The pitch angle averaged particle distribution, f0 (x, t) =
(2vt)−1 Θ

(
1− x2/v2t2

)
, is best described as an expanding ’box’ of decreasing height.

Among earlier attempts to reduce f to its pitch angle-averaged part, f (t,x,µ)→ f0 (t,x), an
approach leading to a “telegraph” equation, can be readily tested using the above box solution.
We will briefly discuss this approach later and show that it is inconsistent with the ballistic limit
of f0 obtained directly from the FP equation. Needless to say that the exact solution of Eq.(2.1),
presented further in this paper, converges to the above-described box distribution at t ≪ tc.

The second, well studied propagation regime is diffusive. It dominates at t ≫ tc ∼ 1/D and
is treated in a way opposite to the above-described ballistic regime, [2]. The r.h.s. of Eq.(2.1) is
now the leading term, thus implying that the particle distribution is close to isotropy, ∂ f/∂ µ → 0.
Working to higher orders in anisotropic corrections ∼ 1/D, and averaging the equation over µ , one
obtains the following infinite hierarchy of equations for f0 (x, t) [5]

∂ f0

∂ t
−κ2

∂ 2 f0

∂x2 =−κ4
∂ 4 f0

∂x4 +κ6
∂ 6 f0

∂x6 − . . . , (2.2)

with κ2n ∼ 1/Dn. This particular hierarchy results from an asymptotic (Chapman-Enskog) expan-
sion of the problem in 1/D under the scattering symmetry: D(−µ) = D(µ). It is valid only for
t ≫ tc ∼ 1/D, and all the short-time-scale, ballistic propagation effects are intentionally eliminated
(cf. elimination of secular terms in perturbative treatments). A failure to do so results in a second
order time derivative in Eq.(2.2) (already mentioned telegraph term) which is illegitimate unless
t ≫ tc. Nevertheless, the telegraph equation has been put forward over since the 1960s as a viable
tool for describing the CR propagation from the ballistic to diffusive phases.
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Figure 1: Fundamental solution of the Fokker-Planck
equation shown for its isotropic component, f0 (x, t) =
⟨ f (x,µ , t)⟩ at t = 0.4, 1.0, 7.0. Analytic approxi-
mation is from Eq.(4.1), diffusive (Gaussian) solution
from Eq.(4.3), numerical - from the FP eq.(3.1). Ver-
tical green line in the upper panel shows the width of
the front.

Meanwhile, the r.h.s. of eq.(2.2) pro-
vides small hyperdiffusive corrections neg-
ligible for t > tc, as the higher spatial deriva-
tives quickly decay because of the smooth-
ing effect from the diffusive term on its l.h.s.
They do not shed much light on the ballistic
and transdiffusive propagation regimes, un-
less the series is summed up with no trun-
cation. The latter requirement follows from
an exact solution of the parent FP equation
[1]. It contains an infinite series of mo-
ments

⟨
x2n f0 (x, t)

⟩
that are evidently con-

nected with the infinite series of coefficients
{κ2n} in eq.(2.2). Conversely, by including
only a few hyperdiffusive correction terms
outside of their validity range, t ≫ tc, one
may worsen the diffusive approximation. It
can also be shown [5] that within its validity
range, a truncated version of eq.(2.2), with
κ2n = 0 for n > 2, can be mapped onto the
telegraph equation. It follows that neither
a truncated hyperdiffusive approach nor the
telegraph equation (a subset of the former)
cannot adequately reproduce the FP solution
at times shorter than t ≫ tc. This was re-
cently demonstrated in [6], by a numerical
integration of Eq.(2.1). We will quantify the
constraint t ≫ tc, repeatedly stressed above,
by comparing the full FP solution with its
diffusive limit (see [1] for more details).

The primary failure of the diffusive ap-
proach is an unrealistically fast (acausal)
propagation, which is especially pronounced
during the ballistic and transdiffusive phases.
Mathematically, the approximation violates
an upper bound |x| ≤ vt that immediately fol-
lows from Eq.(2.1) for a point source solu-
tion, discussed above. There have been at-
tempts to overcome this problem, but no ade-
quate ab initio description of particle spread-
ing that would cover ballistic and diffusive
phases was elaborated. The most persistent such attempt is based on the telegraph equation dis-
cussed above. It has a misleading impact on the field of CR propagation for that simple reason
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that the solution of this equation is inconsistent with its parent FP equation. We established this
simple fact by considering the ballistic propagation phase directly from eq.(2.1) (see [5, 1] for more
discussion).

It follows that there is no viable analytical tool to address the earlier phases of particle prop-
agation, other than to either sum up the series of hyperdiffusive terms or to solve the FP equation
directly. Below, we take the second option.

3. Exact Solution of FP equation

The energy dependence of the particle scattering frequency enters eq.(2.1) only as a parame-
ter, i.e., D(E). The possible pitch-angle dependence of D typically scales as D(µ) ∝ |µ|q−1 [2],
thus being suppressed in an important case q = 1, where q is the power-law index of magnetic
turbulence. Under these, quite realistic assumptions, the FP equation can be solved exactly [1].
To describe this solution, it is convenient to rewrite Eq.(2.1) using dimensionless time and length
units according to the following transformations D(E) t → t, Dx/v → x. Instead of Eq.(2.1) we
then have

∂ f
∂ t

+µ
∂ f
∂x

=
∂

∂ µ
(
1−µ2) ∂ f

∂ µ
(3.1)

This equation contains no parameters, thus precluding any direct, small-parameter expansion unless
such a parameter implicitly enters the problem through an initial condition, f (x,µ,0). In particular,
if one is using Eq.(2.2) (1/D- type expansion), not only should the initial distribution be close to
isotropy, but it should also be spatially broad. The latter condition will prevent a high anisotropy
from arising via the second term on the l.h.s. of Eq.(3.1). Hence, the problem of a point source
spreading (Green’s function, or fundamental solution) can not be treated using conventional 1/D
expansion, until f becomes quasi-isotropic, that is broadened to x & 1.

The exact solution of Eq.(3.1) can be obtained by resolving an infinite chain of equations for
the moments of f (µ,x)

Mi j (t) =
⟨
µ ix j⟩= ∫ ∞

−∞
dx

∫ 1

−1
µ ix j f dµ/2 (3.2)

for all integer i, j ≥ 0. The lowest moment M00 is automatically conserved by Eq.(3.1) (as being
proportional to the number of particles) and we normalize it to unity, M00 = 1. All the higher
moments can be explicitly obtained from the following recurrence relation [1]

Mi j (t) = Mi j (0)e−i(i+1)t +
∫ t

0
ei(i+1)(t ′−t) [ jMi+1, j−1

(
t ′
)
+ i(i−1)Mi−2, j

(
t ′
)]

dt ′ (3.3)

Focusing on a point source (fundamental) solution, we assume the initial distribution f (x,µ,0) to
be symmetric in x. The initial spatial width must then be set to zero, M02 (0)=

⟨
x2
⟩

0 = 0. Assuming
f (x,µ,0) to be isotropic in µ for simplicity, nulls the odd moments, while the even moments
become Mi0 = 1/(i+1). From the above solution with j = 0, for the leftmost column of the matrix
Mi j (t) we readily obtain Mi0 (t) = Mi0 (0) = δi0/(i+1). Starting from this column, eq.(3.3) can be
recursively resolved for all i, j ≥ 0 by using the chain rule for Mi j : i → i−1, j → j+1.

5
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From the mathematical point of view, only a full set of moments in Eq.(3.3) provides a com-
plete solution f (x,µ, t) of Eq.(3.1) given the initial value, f (x,µ,0), that, in turn, determines the
matrix Mi j (0) in Eq.(3.3). To adequately reproduce the ballistic and transdiffusive phases the se-
ries of moments cannot be truncated. Considering the fundamental solution, we will focus on the
isotropic part of particle distribution

f0 (x, t) =
∫ 1

−1
f (µ,x, t)dµ/2, (3.4)

as only this part contributes to the particle number density. The fundamental solution to be obtained
requires the initial condition f0 (x,0) = δ (x). The matrix elements that represent f0 are M0 j which
we denote simply as M j ≡ M0 j. Note, that Mi j (i) with i > 0 are not small and absolutely essential
for calculating the full set of the moments M j. To link the set M j (t) to f0 (x, t), we use the moment-
generating function

fλ (t) =
∫ ∞

−∞
f0 (x, t)eλxdx =

∞

∑
n=0

λ 2n

(2n)!
M2n (t) (3.5)

where we omitted the odd moments irrelevant to the fundamental (symmetric in x) solution. The
above expansion may be cast in a familiar Fourier transform of f0(x, t) by setting λ =−ik.

Since expressions for the moments M2n are becoming cumbersome with growing n, an ex-
act form of the Green’s function f0 (x, t), which can be recovered from eq.(3.5) by inverting the
Fourier integral, is also not simple, to say the least. Therefore, in the next section, we derive a new
simplified version of the exact FP propagator.

4. Two-moment Fokker-Plank Propagator

The series in the moment generating function fλ in eq.(3.5) can be evaluated for small and
large values of t and λ t. Although there are four limiting cases, all the expressions for the sum
fλ (t) are surprisingly similar. They can be unified under a single approximate (but valid for all x
and t) expression for f0:

f0 (x, t)≈
1
4y

[
erf

(
x+ y

∆

)
− erf

(
x− y

∆

)]
. (4.1)

It has been obtained in [1] from an inverse Fourier transform, fλ (t) 7→ f0 (x, t), after summing up
the series for fλ in eq.(3.5). The two independent functions of time, y(t) and ∆(t) can be expressed
through the moment M2 (t), which we calculate exactly from eq.(3.3). The solution f0 with y and
∆ so obtained compares very well with the numerical FP solution. The disadvantage of this single-
moment representation of y and ∆ is that it requires some (fairly minor, though) changes in y(M2)

and ∆(M2), between the cases t . 1 and t & 1.
Here we obtain a uniformly valid expansion for f0 as follows. As the general form of the

approximate solution given in eq.(4.1) must arguably be the same for all t [1], we find the functions
y(t) and ∆(t) by requiring that f0 (x, t) generates the moments M2 and M4 exactly:

M2 =
∫

x2 f0 (x, t)dx, M4 =
∫

x4 f0 (x, t)dx (4.2)

6
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Note, that all odd moments vanish automatically for f0 given by eq.(4.1). Recall, that we know
exact values for all moments M2n from eq.(3.3). Here, we will only use M2 and M4, which satisfy
the initial conditions, M2 (0) = 0 and M4 (0) = 0:

M2 =
t
3
− 1

6
(
1− e−2t) , M4 =

1
270

e−6t − t +2
5

e−2t +
1
3

t2 − 26
45

t +
107
270

Substituting f0 from eq.( 4.1) into eqs.(4.2), we find

y =
[

45
2

(
M2

2 −
1
3

M4

)]1/4

, ∆ =

√
2M2 −

√
10

√
M2

2 −
1
3

M4

The FP solution, eq.(4.1), is not more difficult than the familiar diffusive solution. Ignoring
the time dependence of y in the error functions, the FP solution corresponds to a conventional
diffusion problem with an initial particle density evenly distributed between −y < x < y, and zero
otherwise. The difference is only in the form of y(t) and ∆(t). At t ≪ 1 this solution is the same
as the ballistic one described in Sec. 2.1. Indeed, since ∆ ∝ t2 and y ≈ t for t ≪ 1, the difference
of the two error functions yields 2Θ

(
1− x2/t2

)
and f0 in eq.(4.1) reproduces the expanding box

solution. Note that the moments Mn(t), being nonlocal, are not useful observationally but they
define the above solution for f (x, t). The telegraph solution, on the contrary, is inconsistent with
this expansion regime. It contains two (nonexistent in the FP solution) singular components at the
two propagating fronts, let alone inaccurate front positions and the overall profile [6].

The width of the propagating fronts at x = ±y, determined by ∆(t), behaves as follows,
Fig.1. At small t ≪ 1, when the box is expanding ballistically, i.e. y ≈ t, the wall thickness
∆ ≈ 2t2/3

√
5. After gradually proceeding through the transdiffusive phase, these quantities be-

come y≈ (11t/6)1/4 and ∆≈ (2t/3)1/2 for t ≫ 1. Accordingly, the expression in eq.(4.1) converges
(rather slowly, though) to:

f0 (x, t) =

√
3

2πt
e−3x2/2t (4.3)

which is the diffusive asymptotic solution of the pitch angle averaged FP equation, given by eq.(2.2)
with κ2 = 1/6 and all the hyperdiffusive coefficients κ2n = 0 for n > 1.

Having at hand the Green’s function for eq.(3.1), it is not difficult to obtain the solution of
its inhomogeneous version. Adding to the r.h.s. of this equation the source function S (x, t), the
pitch-angle averaged solution can be expressed as follows

⟨ f (x, t,µ)⟩=
∫ t

0
dt ′

∫ ∞

−∞
f0
(
x− x′, t − t ′

)
S
(
x′, t ′

)
dt ′ (4.4)

For the propagator f0 here, either the simplified version, eq.(4.1), or the exact solution obtained
by a Fourier inversion of eq.(3.5) [1] can be used. The source function is assumed to be isotropic
here. This restriction can be relaxed by changing the initial conditions for the solution eq.(3.3) to
Mi0 (t = 0) = µ ′i/2 and adding the required integral over µ ′ to eq.(4.4). The resulting propagator,
however, will be no longer be simple.

Summarizing this section, the two-moment single formula representation of the FP solution
in eq.(4.1) has correct asymptotic limits at t → 0,∞, both obtained independently of eq.(4.1). The
deviations from the numerical solution at t ∼ 1 are minor and more than compensated by the sim-
plicity of eq.(4.1) and its validity for all 0 < t < ∞.
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5. Conclusions

The exact solution of FP equation obtained in [1] is simplified. The new propagator accurately
evolves the isotropic part of the distribution f0 (x, t), uniformly in −∞ < x < ∞ and 0 ≤ t < ∞.

The overall CR propagation categorizes into three phases: ballistic (t ≪ 1), transdiffusive
(t ∼ 1) and diffusive (t ≫ 1), (time in units of collision time tc). In the ballistic phase, the source
expands as a “box” of size ∆x ∝

√
⟨x2⟩ ∝ t with thickening “walls” at x = ±y(t) ≈ ±t of the

width ∆ ∝ t2. During the transdiffusive phase, the box’s walls thicken to a sizable fraction of the
box ∆ ∼ ∆x ∼ y and the expansion slows down, Fig. 1. Finally, during the conventional diffusion
phase, ∆x ∼ ∆ ∝

√
t, while the walls are completely smeared out, as y ∝ t1/4, so y ≪ ∆.

In constraining earlier FP-based models for the CR propagation, the exact FP solution reveals
the following:

• the conventional diffusion approximation can be safely applied but, only after 5-7 collision
times, depending on the accuracy requirements

• a popular telegraph approach, originally intended to cover also the earlier propagation phases
at t . 1, is inconsistent with the exact FP solution (see also [1])

• no sub/super-diffusive propagation regime is present in the exact FP solution

The latter regimes are occasionally postulated, e.g., in studies of diffusive shock acceleration
(DSA), in the form of a power-law dependence of particle dispersion

√
⟨x2⟩∝ tα , with 1/2<α < 1

(superdiffusion) or 0 < α < 1/2 (subdiffusion). The exact FP propagation leads to
√

⟨x2⟩ that
smoothly changes from the ballistic (α → 1) to diffusive (α → 1/2) propagation with no dwelling
at any particular value of α between these limits.
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