PoS - Proceedings of Science
Volume 301 - 35th International Cosmic Ray Conference (ICRC2017) - Session Dark Matter. DM-indirect searches
We are all the Cosmic-Ray Extremely Distributed Observatory
P. Homola,* N. Dhital, J. Jarvis, P. Poznański, K. Almeida Cheminant on behalf of the CREDO Collaboration
*corresponding author
Full text: pdf
Pre-published on: August 16, 2017
Published on: August 03, 2018
The Cosmic-Ray Extremely Distributed Observatory (CREDO) is an infrastructure for global analysis of extremely extended cosmic-ray phenomena, so-called super-preshowers, beyond the capabilities of existing, discrete, detectors and observatories. To date cosmic-ray research has been focused on detecting single air showers, while the search for ensembles of cosmic-ray events induced by super-preshowers is a scientific terra incognita - CREDO explores this uncharted realm. Positive detection of super-preshowers would have an impact on ultra-high energy astrophysics, cosmology and the physics of fundamental particle interactions as they can theoretically be formed within both classical (photon-photon interactions) and exotic (Super Heavy Dark Matter particle decay and interaction) scenarios. Some super-preshowers are predicted to have a significant spatial extent - a unique signature only detectable with the existing cosmic-ray infrastructure taken as a global network. An obvious, although yet unprobed, super-preshower 'detection limit' would be located somewhere between an air shower, induced by a super-preshower composed of tightly collimated particles, and a super-preshower composed of particles spread so widely that only few of them can reach the Earth. CREDO will probe this detection limit, leading to either an observation of an as yet unseen physical phenomenon, or the setting upper limits to the existence of large extraterrestrial cascades which would constrain fundamental physics models. While CREDO’s focus is on testing physics at energies close to the Grand Unified Theories range, the broader phenomena are expected to be composed of particles with energies ranging from GeV to ZeV. This motivates our advertising of this concept across the astroparticle physics community.
DOI: https://doi.org/10.22323/1.301.1078
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.