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A model of Forbush-decrease in a magnetic cloud is presented. We calculate moments of the 

particle distribution function depending on time. The calculated results of cosmic ray intensity 

generally agree with the observed ones in events registered by ground based detectors. It is 

found that the magnetic flux rope is of great importance in dynamics of Forbush decrease. 
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1. Introduction 

Coronal mass ejections (CMEs) affect near-Earth space. They can include magnetic 

clouds (MCs), which have the strongest influence on Forbush decreases (FD). Theoretical 

studies of the spatial distribution of cosmic rays (CRs) are based on the solution of the diffusive 

transport equation. MC is presented as an infinitely extended cylinder with a constant radius 

moving in interplanetary space in [1], the expansion of the cylinder is taken into account in [2]. 

However, the cylindrical model has its shortcomings as spatial distribution of cosmic rays (CR) 

depends on magnetic flux rope (MFR) due to their high mobility. Thus, the toroidal model is 

more appropriate for these studies [3,4]. 

We present a MFR model in a MC, a method for calculating the CR distribution function 

in a MC, and the relations with its three moments. The calculation results and the measurements 

are compared. 

2. MC model and calculation method 

We suggest that a MC having the shape of a torus segment is located inside a CME with a 

fixed distribution of the radial velocity at the initial moment. The lateral boundaries of the 

segment will be referred to as ends. The initial MFR is described by the solution of Miller and 

Turner [5]. The subsequent MC motion is determined by the kinematic model, which describes 

the velocity conservation of the Lagrangian particles in a CME. The MFR during its motion is 

determined by the freezing-in condition represented as the conservation of the magnetic flux 

through the areas associated with the Lagrangian particle flow. The calculation of the particle 

distribution function is based on the Liouville theorem: the density of the particle distribution 

function retains along their trajectories, which are characteristics of the Boltzmann equation. We 

assume that: 1) Parker’s solar wind is outside the MC; 2) the density of the distribution function 

is isotropic and homogeneous in the region ahead of MC. 

The model MC is a segment of the magnetic cloud. Real MCs are connected to the Sun 

by means of magnetic field lines and the model MC describes their central parts. The MFR (the 

field direction changes from perpendicular on the surface to longitudinal at the center of the 

cross-section) determines the particle propagation. As a result, particles from the surrounding 

space fill only the near surface region of the cloud segment. A significant part of the particles 

comes to its ends. The particles can fill the near axis region when they return to the segment 

after redistribution along the field lines in the regions connecting the MC to the Sun. We 

introduce the loss factor of particles at the ends of 𝛼 = (𝐼1 − 𝐼2) 𝐼1⁄ , which is a free parameter. 

Here 𝐼1, 𝐼2 are the particle fluxes coming to the ends and returning back to the segment. It is also 

assumed that the distribution function of the returning particles is isotropic and homogeneous 

over the cross-section of the end. The accepted assumptions are sufficient to calculate the 

particle distribution function.  

In theory, the particle distribution function is calculated but in experimental studies the 

moments of the distribution function are determined. To obtain the relations between the 

distribution function and its moments, we write the relation 

    𝑓(𝑝) = ∑ 𝑛𝑖𝑏𝑖𝑖 + ∑ 𝑛𝑖𝑛𝑗𝑓𝑖𝑗𝑖,𝑗 ,    (1) 

where 𝑓 is distribution function; 𝑛𝑖 = 𝑝𝑖 𝑝⁄  is the unit vector of the particle motion direction; 𝑝𝑖, 

𝑏𝑖 are the momentum and vector components, respectively; 𝑓𝑖𝑗 is the symmetric 2nd-order 
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tensor. The components of the unit vector is defined by two angles. We determine the 

components of the vector and six components of the tensor by multiplying (1) by various 

trigonometric functions of these angles and integrating over the solid angle. For 2 moments we 

obtain 

  𝑓0 = ∫𝑓𝑑𝛺 4⁄ 𝜋 = (𝑓11 + 𝑓22 + 𝑓33) 3⁄ , 𝐴 = −(�⃗⃗� 𝑓0⁄ )100%,  (2) 

where 𝑓0 is the distribution function density averaged over the solid angle ( the zero moment), 𝐴 

is anisotropy (the first moment), and 𝑑𝛺 is the differential of the solid angle.  

Any symmetric 2nd-order tensor can be reduced to the diagonal form. For this purpose, 

we calculate the eigenvalues and eigenvectors of the tensor. The diagonal form of the tensor 

corresponds to the ellipsoidal form of the angular dependence of the distribution function 

referred to as the second moment. The ellipsoid shape depends on the ratio of the eigenvalues, 

with its orientation being determined by the eigenvectors. 

3. Calculation results and discussion 

We used the following parameters of the initial torus segment in the demonstration 

calculation: the torus cross-section radius is 0.043𝑟𝑒 (𝑟𝑒 is the astronomical unit), the torus axis 

is located in the solar equator plane at 0.457𝑟𝑒 from the Sun; angular width of the segment is 

𝜋 2⁄ ; the magnetic field intensity on the torus axis is 20 nT; MFR is SWN-type; the torus 

expansion during its radial motion is produced by a spherically symmetric CME, the velocities 

of the Lagrangian particles of which are distributed linearly along the radius from 500 to 400 

km/s within the torus. MC is surrounded by the Parker’s solar wind. The interaction between the 

MC and the solar wind is not taken into account. The parameters shown in the figures refer to 

the point with the coordinates of 𝑥 = 1𝑟𝑒, 𝑦 = 𝑧 = 0 in the heliocentric Cartesian coordinate 

system. The chosen point is located in the plane dividing the torus segment into equal parts. 

Time step is 1 hour. Kinetic energy of particles is 𝜀𝑘 = 10𝐺𝑒𝑉. Figure 1 shows the magnetic 

field magnitude and its components in the MC in time. As can be seen from the figure, the 

chosen point is located inside the MC in the interval from 42 to 61 hours. The maximum value 

of the magnetic field is 20 nT, it did not change during the MC propagation. 

 

Figure 1: Magnetic field magnitude and its components: black line is vector magnitude, 

blue line is 𝐵𝑥, red line is 𝐵𝑦, green line is 𝐵𝑧. The vertical lines are MC boundaries. 
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Figure 2 shows the FD amplitude of 𝐴𝐹𝐷 = ((𝑓0 − 𝑓00) 𝑓00⁄ )100%, where 𝑓00 is the 

distribution function density outside the MC. The curves from top to bottom correspond to the 

values set of 𝛼 = (0 − 5)%. The maximum value of 𝐴𝐹𝐷 changes from 0.2 to 2.5%. Thus, the 

greater the loss factor at the segment ends, the greater 𝐴𝐹𝐷. 

 

Figure 2: Amplitude of FD in time. The curves from top to bottom correspond to 𝛼 =

(0 − 5)%. The vertical lines are MC boundaries. 

 

Figures 3, 4 show the anisotropy components with 𝛼 = 5% as a time function for two 

MFR types: SWN type in Figure 3 and SEN type in Figure 4. Each component has a feature in 

temporal behavior. Component 𝐴𝑥 is the smallest, components 𝐴𝑦, 𝐴𝑧 change their sign two and 

one time crossing the MC, respectively. One can see stable dependences in the behavior of the 

anisotropy components. In the region with the maximum values of component 𝐵𝑦 (interval (48-

55) hours according to Figure 1), 𝐴𝑦 has a minus sign. For component 𝐴𝑧, the MC crossing time 

can be divided into two intervals: the first interval starts from the entrance into the MC and ends 

at its center; the second one starts from the center and ends at the exit from the MC. The 

component sign in the first interval depends on the sign of component 𝐵𝑦: 𝐴𝑧 > 0 when 𝐵𝑦 > 0 

and vice versa. The boundary between the intervals coincides with the sign change of 

component 𝐵𝑧, i.e. in the vicinity of the magnetic cloud center. For NWS and NES types 𝐴𝑦 has 

a plus sign. Sign of component 𝐴𝑧 in the first interval depends on the sign of component 𝐵𝑦: 

𝐴𝑧 > 0 when 𝐵𝑦 > 0 and vice versa, as well as for SWN and SEN types. These relations 

confirm the possibility to determine the magnetic field properties based on measuring the CR 

intensity by ground-based detectors [6]. 
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Figure 3: Anisotropy components with 𝛼 = 5% in time: black line is component 𝐴𝑥, red 

line is 𝐴𝑦, green line is 𝐴𝑧. SWN type of the MC. 

 

Figure 4: Anisotropy components with 𝛼 = 5% in time: black line is component 𝐴𝑥, red 

line is 𝐴𝑦, green line is 𝐴𝑧. SEN type of the MC. 

 

The anisotropy magnitude depends on the loss factor 𝛼 at the ends of the magnetic cloud 

segment. Figure 5 shows the anisotropy components depending on time for different 𝛼. The 

components with 𝛼=5 coincide with the model ones shown in Figure 3. As can be seen, the 

behavior of the anisotropy components does not depend on 𝛼 in time, however, the anisotropy 

amplitude shows a dependence: the smaller 𝛼, the less the anisotropy, as well as the FD 

amplitude.  

  

Figure 5: Anisotropy components with 𝛼 = (0 − 5)% in time. SWN type of the MC. 
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Figure 6 illustrates the equatorial component of anisotropy in the form of vector sum of 

hourly values of 𝐴𝑥, 𝐴𝑦, which are the anisotropy components. As can be seen from the Figure 

6: 1) the anisotropy significantly increases in the MC (43-57) hours; 2) component 𝐴𝑦 is 

significantly higher than component 𝐴𝑥; 3) component 𝐴𝑦 increases within (42-47) hours and 

decreases within (47-54) hours; 4) the anisotropy vector rotates: the rotation is anticlockwise in 

the interval during (45-51) hours and clockwise during (51-56) hours. 

 

Figure 6: Equatorial component 𝐴𝑥,𝑦 of the anysotropy. SWN type of the MC. 

 

Figures 7,8 show the eigenvalues and the orientation angles of the second moment of the 

CR distribution function. As can be seen from Figure 7, the difference between two eigenvalues 

is ~ 0.3%, and their difference from the third eigenvalue is ~ 3% in the interval (46-54) hours. 

Outside the interval, the eigenvalues coincide with the accuracy of ~ 0.3%. Thus, the second 

moment of the CR distribution function in the interval (46-54) hours represents a biaxial 

ellipsoid, in which the smallest of the axes differs from the other two by ~ 3%. Outside this time 

interval, the second moment represents the sphere with the accuracy of ~ 0.3%. Comparing 

Figures 2 and 7, it is clear that the ellipsoid of the second moment coincides with the FD in 

time. 

 

Figure 7: Eigenvalues of the second moment of the CR distribution function in time. 
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Figure 8: Orientation angles of the second moment of the CR distribution function in time. 

Black curve is course angle and red one is tangage angle. 

 

The orientation of the ellipsoid in space is determined by 3 Euler angles: course, tangage 

and bank. The orientation of a biaxial ellipsoid is determined by 2 angles: α is course angle - the 

angle between the projection of the smallest axis on the plane X0Y and the X axis; Β is tangage 

angle - the angle between this projection and the Z axis. 

As can be seen from Figure 8, in the interval (48-54) hour, α≃π/2 (as for the ellipsoid axis 

α=-π/2=π/2) and β monotonically changes from π / 4 to 0 and back to π/4. 

The calculation of the CR distribution function with 60 GeV energy in the MC with 

similar parameters showed the absence of FD. It reveals that the FD amplitude depends on the 

magnetic field strength and the MC cross-section radius. The presented results are obtained for a 

MC, whose axis is located in the solar equator plane. Comparing the calculation results with the 

measurements, it is necessary to take into account the trajectory of the MC crossing, on which 

the time dynamics of the moments of the CR distribution function significantly depends. 

The work [7] presents the results of the analysis of the CR density and anisotropy with 

the rigidity of 10 GV (9 GeV) in 99 events of the 23rd and 24th solar cycles, in which the 

presence of MCs is confirmed. 

In the studied sample, there is a great diversity in: motion velocity, the gradient of the 

flow velocity within the MC, the distribution and magnetic field magnitude in the MC. The time 

dynamics of the CR density and anisotropy of is also diverse. In this sample, the characteristic 

behavior of density and anisotropy in MCs is presented: 1. the maximum value of 𝐴𝐹𝐷 is within 

(1-12)%; 2. the density drop is sharp, and the recovery is more gradual; 3. the anisotropy 

changes significantly at the entrance and/or exit from the MC; 4. monotonic change of the 

anisotropy is often observed inside the MC; 5. a rotation of the equatorial component 𝐴𝑥,𝑦 is 

possible; 6. the north-south component (𝐴𝑧) often changes its sign in the vicinity of the MC 

center. As can be seen from the results presented in Figures 2-6, the model calculations 

generally coincide with the observed behavior of the density and anisotropy in the MC. 
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4. Conclusions 

1. We show a model of a dynamic MC located in an inhomogeneous matter flow. A 

method for calculating the MFR in the MC initially being a torus segment is presented and 

applied. 

2. A method for calculating the particle distribution function in the MC using particle 

trajectories is presented and applied. 

3. The relations between the particle distribution function and its 3 moments are obtained. 

4. The influence of the regions connecting MC with the Sun on the CR distribution in the 

MC is determined. This effect is due to the MFR. 

5. Time dynamics of 3 moments of the particle distribution function in the MC is 

calculated. The dynamics of the CR density and anisotropy generally agree with the 

measurements. 

6. The found relations between the dynamics of the distribution function moments and the 

MFR confirm the possibility to determine the magnetic field properties based on measuring the 

CR intensity by ground-based detectors. 

 

The work is supported by Russian Foundation for Basic Research (Project №15-42-

05085-р_восток_а). 
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