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Cosmic-ray acceleration by compressive plasma
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We suggest that the production of Galactic cosmic rays in supernova remnants undergoes two

stages of acceleration mechanisms. Cosmic rays are first accelerated to certain cut-off energy

that is significantly below the knee energy by the shock front. They then are further accelerated

stochastically by compressive plasma fluctuations in the downstream region to the knee energy.

If the compressive plasma fluctuations appear as an ensemble of shocklets, the stochastic accel-

eration process raises the cut-off energy without changing the shock power-law spectrum. In

this way, the nonlinear shock acceleration effects become less severe, and it is not necessary to

amplify upstream interstellar magnetic field to mG in order to make cosmic rays reach the knee

energy.
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Cosmic-ray acceleration by compressive plasma fluctuations in supernova shells

1. Introduction

For a population of particles with a nearly isotropic distribution, the rate of particle momen-

tum (p) change averaged over all the directions is d p/dt = ∇ ·Vp/3, where V is the velocity of

background plasma embedded with magnetic fields. Since the divergence of plasma velocity ∇ ·V
is a measure of plasma of compression or expansion, the behavior of particle energy gain or loss

is directly tied to the compression of plasma media that they pass through. Particles gain energy

whenever they go through regions of plasma compression with ∇ ·V < 0, and they are decelerated

in plasma rarefaction regions where ∇ ·V > 0. We usually call this mechanism adiabatic heating or

cooling because it is the same as that derived from the adiabatic process of the ideal gas in thermo-

dynamics. The motion of plasma always contains some random fluctuations, so V = U+u, where

U is the average large-scale plasma flow velocity and u is the random small-scale component. In

the limit of small fluctuations, the quasilinear approximation leads the random energy gain or loss

to a diffusion process in the momentum space. The momentum diffusion coefficient can be calcu-

lated from the spectrum of longitudinal (in the same direction of the wavenumber k vector) plasma

velocity fluctuation (Ptuskin 1988; Bykov and Toptygin 1993):

Dpp =
p28πκ

9

∫ ∞

0
dk

k4S(k)

V 2
w +κ2k2

, (1.1)

where we have assumed that the spectral density is isotropic, S(k) is the velocity fluctuation spectral

power density in k vector space, κ is particle diffusion coefficient, and Vw is the propagation speed

of the fluctuation. In a plasma with small velocity fluctuations, the propagation speed of fluctuation

Vw is essential the phase speed of magnetosonic wave or sonic wave if the magnetic field is weak.

The stochastic particle acceleration by compressive plasma fluctuations is ubiquitous in space.

Ptuskin (1998) applied the mechanism to cosmic rays propagating in the interstellar medium. He

found that it is only marginally effective for the reacceleration of cosmic rays between 0.1-10 GeV.

In this paper, we apply this stochastic particle acceleration mechanism to cosmic rays in the

downstream region of supernova remnant shock waves. Because of special conditions of in the

downstream turbulent region, we argue that cosmic rays are accelerated to the knee energy of

3× 1015 eV by the stochastic acceleration rather than by the shock wave in the front. A more

extensive study on this subject using various turbulence spectra can be found in Zhang (2015).

2. Estimate of acceleration time

In order to estimate the time of particle acceleration, we need to know the spectrum of plasma

velocity fluctuations. We assume that S(k) is a power law of slope −4+α with α < 1 between

k0 = 1/L0 and k1 = 1/L1 (L0 ≫ L1). A case of α = 0 corresponds to an ensemble of randomly

oriented shock waves. Since the average velocity fluctuation is

〈u2〉= 4π

∫ k1

k0

S(k)k2dk (2.1)

After normalization to the total fluctuation, the spectrum S(k) can be written as

S(k) =
(1−α)〈u2〉

4πL1−α
0

k−4+α for k0 < k < k1 (2.2)
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Figure 1: Integrad in Eq (2.3) as a function of varible q = ln(kκ/Vw)

The time scale of particle acceleration (τacc) can be estimated using τacc = p2/Dpp First, we

look at what wavelength range of plasma velocity fluctuation contributes to the particle accelera-

tion. Change variable k =Vw exp(q)/κ , so that

τ−1
acc =

2〈u2〉
9V 1−α

w καL1−α
0

∫ q1

q0

dq
e(1+α)q

1+ e2q
(2.3)

Figure 1 shows some typical variations of the integrand in Eq (2.3) as a function of variable q. The

integrand peaks at qmax = ln[(1+α)/(1−α)]/2 for all α >−1, suggesting the velocity fluctuation

contribute to the particle acceleration the most at wavenumber kmax =
√

(1+α)/(1−α)Vw/κ . For

an α = 0, the maximum value of 1/2 is located at at qmax = 0 or kmax =Vw/κ , and its half maximum

half width is ∆q = ln(2+
√

3) = 1.3 meaning the fluctuations between klow = (2−
√

3)Vw/κ and

kup = (2+
√

3)Vw/κ have a significant contribution to the acceleration of particles with a spatial

diffusion coefficient κ . This analysis essentially tells us that the stochastic acceleration by com-

pressive plasma fluctuations occurs in a broad "resonance" manner. If the power-law spectrum

covers most of the resonance region with q0 ≪ qmax −∆q and q1 ≫ qmax +∆q, then the integration

is essentially the same as that one covering the entire range from −∞ to ∞, yielding a value of π/2.

When α 6= 0 but only slightly deviates from 0, the integration in Eq (2.3) is close to π/2, which

leads to an acceleration time

τ−1
acc ≈

π〈u2〉
9κ

(

κ

VwL0

)1−α

(2.4)

In a case of α = 0, the acceleration is independent of particle diffusion coefficient κ , meaning that

all particles are accelerated at the same rate as long as the Vw/κ falls in between q0 and q1.

Now let us estimate for the time scale of particle acceleration. As an exercise, we first apply

to cosmic rays in the ambient interstellar medium filled with an ensemble of shock waves due to

relative motions of interstellar clouds. Typical diffusion coefficient of cosmic rays is κ = 1028

cm2/s. In a warm medium of a 8×103 K temperature, the sound speed Vw is 10.5 km/s, but in a hot
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medium of 106 K, Vw = 117 km/s. Cosmic rays are most effectively accelerated by compressive

fluctuations of wavelengths in the range of 277 to 3092 pc. Take a u = 20 km/s for the average

relative motion between interstellar clouds, we can obtain an acceleration time τacc ranging from

2.0×108 to 2.5×109 years. Compared to the confinement time of 1×108 for cosmic rays at ∼ 1×
109 eV as inferred from the measurements of radioactive isotope composition, these numbers for

the acceleration time indicate that stochastic compressive acceleration is just marginally important

to the reacceleration of cosmic rays in the interstellar medium.

The situation in the heated and magnetically amplified medium downstream of supernova

remnant shocks are very different. For a supercritical supernova shock propagating at U1 = 104

km/s into the interstellar medium, the sound speed in the downstream region Vw =
√

5U1/4 =

5.6 × 103 km/s. The particle diffusion coefficient is most likely to be the Bohm diffusion limit

because of the high level of plasma turbulence in the downstream media, i.e., κ = pc/(3ZeB2),

where Ze is the charge of the particle and B2 is the strength of magnetic field in the downstream

media. The "resonant" wavelength of compressive plasma fluctuations occurs at

Lmax ≈
pc

3ZeB2Vw

(2.5)

Across the supernova shock, the magnetic field is greatly amplified from its interstellar values due

to plasma instability at the supercritical shock in addition to shock plasma compression. Observa-

tions (e.g., Vink & Laming, 2003) suggest that the magnetic field behind the shock could be strong

in the order of mG. Taking a B2 = 1 mG, we have Lmax = 1× 10−9 pc for 1× 109 eV protons

and Lmax = 3×10−3 for 3×1015 eV protons at the knee energy of Galactic cosmic ray spectrum.

These scales are much less than the size of the supernova remnant. It is possible that turbulence in

the supernova shells can generate enough compressive plasma fluctuations of these scales. If the

spectrum of compressive turbulence has a k−4 slope or α = 0, the acceleration time can calculated

through Eq (2.4), yielding an energy-independent acceleration time of τacc = 291 years for all cos-

mic rays. In the calculation we have assumed that the amplitude of velocity fluctuations is equal to

0.3 times of bulk plasma flow behind the shock, or u = 2250 km/s and L0 = 10Lmax = 3×10−2 pc.

Such a short time, which is less than the time for the supernova remnant to reach the Sedov-Taylor

phase, suggests that stochastic acceleration by compressive fluctuations in the downstream region

of supernova shocks can accelerate Galactic cosmic rays to the knee energy.

3. Calculation of the energy spectrum of Galactic cosmic rays

Most Galactic cosmic rays are accelerated from interstellar medium material by the forward

supernova shock. After a certain amount of time, as power-law spectrum is established up to a

cut-off energy (Ec) or momentum (pc = Ec/c ), which can be determined from the available time

(Lagage & Cesarsky, 1983)

t =

∫ pc

0

3

U2 −U1

(

κ1

Ush −U1

+
κ2

Ush −U2

)

d p

p
, (3.1)

where Ush is the shock speed, U1(= 0), U2 are plasma speed, and κ1, κ2 are the particle diffusion

coefficient in the upstream (subscript 1) and downstream (subscript 2) media. Since κ2 ≪ κ1, the

3
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cut-off momentum is mainly determined by the upstream condition. Using the Bohm limit and

typical magnetic field strength in the upstream interstellar magnetic field, the cut-off energy Ec is

estimated to be well below the knee energy in the cosmic ray spectrum. Adiabatic cooling in the

expansion of supernova remnant further reduces the cut-off energy. A remedy was proposed to

amplify the upstream interstellar magnetic field dramatically to a level greater than mG through a

nonlinear mechanism of non-resonant instability induced by accelerated particles from the shock

(Bell, 2004; 2005). There are many follow-up studies on this subject (e.g., Caprioli and Spitkovsky,

2014), but how the instability evolves nonlinearly into that high field and on a large scale (approx-

imately the gyroradius of cosmic rays at the knee energy) in the upstream interstellar medium has

yet been clearly demonstrated or understood. Besides, if the non-linearity is that strong to amplify

upstream interstellar magnetic field to mG, calculations show that the cosmic ray spectrum is no

longer a power law (Bykov et al, 2014), which is not consistent with observations.

We suggest that stochastic acceleration my compressive plasma fluctuations in the downstream

region is important to the production of comic rays. Cosmic rays gone through shock acceleration

are further accelerated as it convects downstream. Neglecting the spatial diffusion κ2, the particle

distribution is governed by

D f

Dt
=

∂ f

∂ t
+U

∂ f

∂ r
=

∂

p2∂ p

(

Dpp p2 ∂ f

∂ p

)

+
1

3

∂

r2∂ r

(

r2U
)

p
∂ f

∂ p
(3.2)

Cosmic rays are injected at the shock at time t0 with a distribution function f0(t0, p)=Ap−γ H(pc(t0)−
p) with a shock spectral slope γ = 3R/(R− 1) where R is the shock compression ratio (Drury,

1983). The normalization constant A represents the particle intensity level.

Cosmic rays suffer an adiabatic cooling inside the supernova shell at a rate of C = 1
3

∂
r2∂ r

(

r2U
)

.

Using a linear dependence of plasma speed inside the shell, U = U2r/Rsh, where the downstream

plasma speed U2 =Ush(1−1/R) and the radius of shock Rsh =Usht for the free expansion phase,

we have C = U2/Rsh = (1− 1/R)/t = 3γ−1/t), which decreases with the age of the supernova

remnant.

The turbulence in the supernova shell should be strong after the plasma goes through the shock

transition. Although most of the turbulence is in incompressible modes, a fraction of turbulence

could be in the compressible model Incompressible turbulence could also be converted into com-

pressible one during the evolution. As time involves and the supernova remnant cools down, the

turbulence becomes more and more supersonic. The collision of flows leads to the formation of

sheets of shocklets with a filamentary density distribution. We assume that the compression tur-

bulence consists of an ensemble of shocklets. Then the spectrum of the velocity fluctuation is

proportional to k−4+α with an α = 0. In this case, Eq (refeq1) leads to a Dpp = D0 p2, where D0 is

a constant equal to the rate of stochastic acceleration τ−1
acc in Eq(2.4). For mathematical simplicity,

let us set up a time-dependent D0 = D00C = D003γ−1/t, which is also inversely proportional to the

age t. Eq (3.2) in the comoving reference frame becomes:

γt

3

D f

Dt
=

∂

p2∂ p

(

D00 p4 ∂ f

∂ p

)

+ p
∂ f

∂ p
(3.3)

This diffusion equation can be solved analytically, yielding:

f = A e3[(γ−3)D00−1] ln(t/t0) p−γ erfc(xc) (3.4)
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where erfc(xc) is the complementary error function of variable

xc =
ln(p/pc)−3γ−1[(2γ −3)D00 −1] ln(t/t0)

√

12D00γ−1 ln(t/t0)
. (3.5)

Several important features of the solution to particle distribution function in Eq(3.4) should be

pointed out. Below xc = 0 or below a certain energy all the spectra have a power-law spectrum that

has the same spectral slope as the original shock spectrum. It means that stochastic acceleration in

the downstream region does not alter the shock spectrum, independent of the stochastic acceleration

rate or adiabatic cooling rate. The power-law spectrum cuts off at xc = 0, where the intensity falls

below 1/2 the expected power-law level, the new cut-off energy E ′
c after stochastic acceleration and

also adiabatic cooling is:

E ′
c =

(

t

t0

)3γ−1[(2γ−3)D00−1]

Ec (3.6)

The intensity level of the power-law spectra is now different with a new normalization

A′ =

(

t

t0

)3[(γ−3)D00−1]

A. (3.7)

D00 = D0/C is the ratio of stochastic acceleration rate to adiabatic cooling rate. It determines

the importance of the stochastic acceleration process during the evolution of the supernova remnant.

In fact, as we estimated earlier, D0 = τ−1
acc = 1/291 year−1 could be time-independent at least for

the free expansion phase. The importance of the stochastic acceleration could evolve with the

supernova remnant age. Early on, when D00 < (2γ −3)−1 = 0.2 or t < 3τacc/[(2γ −3)γ ] = 44 years

for a γ = 4, both E ′
c and A′ decrease with time t. In this phase the adiabatic cooling dominates.

If (2γ − 3)−1 < D00 < (γ − 3)−1 or 44 years = 3τacc/[(2γ − 3)γ ] < 3τacc/[(γ − 3)γ ] = 218 years,

the cut-off energy E ′
c increase with the age t although the intensity A′ decreases with the age t.

During this stage stochastic acceleration play a weak role, but even so the cut-off energy still

increases. After t = 3τacc/[(γ − 3)γ ] = 218 years, D00 > (γ − 3)−1 or D0 > C, meaning the rate

of stochastic acceleration exceeds the rate of adiabatic cooling. Both the particle intensity A′ and

cut-off energy E ′
c increase with the age. During this phase the total pressure or energy density of the

accelerated particles increase rapidly with t. Since cosmic rays already have taken up a significant

fraction of total energy of supernova remnant, rapid energy conversion from the plasma turbulence

to cosmic rays cannot sustain without modification of turbulence power by back-reaction of the

further accelerated cosmic rays. So the system must return to no further growth of cosmic-ray

intensity A′, which requires D00 ≤ (γ − 3)−1 , or D0 ≤ C. This stage is called critical stochastic

acceleration or pressure balance stage. A initially strong enough compressive turbulence must

lowers its power to ensure its effect on particle acceleration does not result in a rate faster than

the rate of adiabatic cooling. This phase will last as long as the supernova shock is strong enough

to generate enough compressive turbulence. The growth of cut-off energy will mainly occur in

this stage of critical stochastic acceleration or pressure balance. Substituting D00 = (γ −3)−1 into

Eq(3.6), we have:

E ′
c =

(

t

t0

)3γ−1[(2γ−3)(γ−3)−1−1]

Ec. (3.8)
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For a γ = 4, E ′
c = 13Ec after t = 2t0. It can easily bring up the cut-off energy of the cosmic ray

spectrum to the knee energy where the particles "resonate" with compressive plasma fluctuations

of the longest wavelength L0. Beyond the knee energy, there is little "resonant" power in the

fluctuations to yield a large enough D0. Because the acceleration only adds particles to the highest

energy end of the spectrum where the particle density is low due to the steeply decreasing spectrum,

the growth of the cut-off energy does not contribute much to the growth of total pressure, thus

leaving the total energy of the system in check.

4. Conclusion

We suggest that stochastic acceleration by compressive plasma fluctuations is important to the

production of Galactic cosmic rays in supernova remnants. Particles accelerated up to a certain

cut-off energy below the knee energy by supernova shocks are further accelerated by the plasma

fluctuations in the downstream region. If the fluctuations exist in the form of the randomly oriented

shocklets ensemble, the mechanism can accelerate cosmic rays to the knee energy without changing

the shock power-law spectrum, and in the meantime, it tends to raise cosmic ray intensity by

canceling the effect of adiabatic cooling. In this way, the burden of accelerating Galactic cosmic

rays on supernova shocks is reduced. Severe nonlinear shock acceleration effects are avoided and

strong magnetic field amplification in the upstream interstellar medium is no longer necessary.
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