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Diffusive cosmic ray acceleration at shock waves of
arbitrary speed
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The analytical theory of diffusive acceleration of cosmic rays at parallel stationary shock waves
of arbitrary speed with magnetostatic turbulence is developed from first principles. The theory is
based on the diffusion approximation to the gyrotropic cosmic ray particle phase space distribu-
tion functions in the respective rest frames of the up- and downstream medium. We derive the
correct cosmic ray jump conditions for the cosmic ray current and density, and match the up- and
downstream distribution functions at the position of the shock. It is essential to account for the
different particle momentum coordinates in the up- and downstream media. Analytical expres-
sions for the momentum spectra of shock-accelerated cosmic rays are calculated. These are valid
for arbitrary shock speeds including relativistic shocks. The correctly taken limit for nonrelativis-
tic shock speeds leads at relativistic cosmic-ray momenta to the power-law momentum spectrum
F1(y1) ∝ y−q(r)

1 and at nonrelativistic cosmic-ray momenta to the power-law momentum spectrum
F1(y1) ∝ y−(1+q(r))

1 , where the power-law spectral index q(r) is a factor 2 greater than the stan-
dard spectral index from nonrelativistic shock acceleration theory. Moreover, for nonrelativistic
shock speeds we calculate for the first time the injection velocity threshold βc ≥

√
3βu, settling

the long-standing injection problem for nonrelativistic shock acceleration.
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1. Introduction

Apart from magnetic reconnection in transient electric fields cosmic-ray particles in magne-
tized cosmic plasmas are accelerated by first- and second-order Fermi processes interacting with
low-frequency electromagnetic fluctuations such as Alfven and Whistler plasma waves. First-order
Fermi acceleration at shock waves is a prime candidate for particle acceleration in astrophysics
process because of the large kinetic energy reservoir of supersonic outflows. Pulsar wind nebulae,
active galactic nuclei and gamma-ray bursts exhibit highly collimated winds or jets with initial
relativistic bulk Lorentz factors Γ0 = (1− (V0/c)2)−1/2 up to 100− 103. Therefore there is high
interest to understand the acceleration of cosmic rays at magnetized shocks of arbitrary speed.

2. First principles

To keep the mathematical complexities at a minimum, we consider the case of an infinitely ex-
tended planar shock with a step-like shock profile U(z∗ < 0) = βuc, U(z∗ > 0) = βdc with positive
0 < βd < βu. In order to automatically remove the strong particle momentum anisotropy due to
the relativistically moving medium, we take the cosmic-ray phase space coordinates in the mixed
comoving coordinate system: time t∗ and space coordinates z∗ in the laboratory (=shock rest)
system and particle’s momentum coordinates p and µ = p‖/p in the rest frame of the streaming
plasma. This choice then allows us to apply the diffusion approximation to cosmic-ray transport
in the respective up- and downstream media. Let (p,µ) and f represent either (p1,µ1) and fu or
(p2,µ2) and fd , respectively. It is also useful to keep the parallel momentum coordinate p‖ = pµ .
It is essential that, because of the chosen mixed comoving coordinate system, the up- (p1,µ1) and
downstream (p2,µ2) cosmic-ray particle momenta in general are different.

In both reference systems the Larmor-phase averaged steady-state Fokker-Planck transport
equation (without momentum losses) for the anisotropic but gyrotropic cosmic-ray phase space
density f (z∗, p,µ) in a medium with magnetostatic turbulence, propagating with the stationary
bulk speed ~U =U(z)~ez∗ = βsc~ez∗ with Γ = [1−β 2

s ]
−1/2 aligned along the magnetic field direction,

reads (Lindquist 1966; Kirk, Schneider and Schlickeiser 1988)

Γ [U + vµ]

[
∂ f0

∂ z∗
− dU

dz∗
Γ

2 p
v

∂ f0

∂ p‖

]
= Q(z∗, p,µ)+

∂

∂ µ

[
Dµµ(µ)

∂ f0

∂ µ

]
, (2.1)

where Q(z∗, p1,µ1) = Q0(p1,µ1)δ (z∗) is the assumed particle injection rate solely at the position
of the shock. With d(ΓU)/dz∗ = Γ3(dU/dz∗) the transport equation (2.1) can be written as

Γ [U + vµ]
∂ f0

∂ z∗
− d(UΓ)

dz∗
(U + vµ)

p
v

∂ f0

∂ p‖
= Q0(p1,µ1)δ (z∗)+

∂

∂ µ

[
Dµµ(µ)

∂ f0

∂ µ

]
(2.2)

With dimensionless momentum coordinates y = p/(mc), y‖ = p‖/(mc) Eq. (2.2) after a few ma-
nipulations reads

∂S(z∗,y,y‖)
∂ z∗

+Γβsc
∂

∂ z∗
∂

∂y‖
[(βs

√
1+ y2 + y‖) f0] = Q0(y1,µ1)δ (z∗)+

∂

∂ µ

[
Dµµ(µ)

∂ f0

∂ µ

]
(2.3)
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with the cosmic-ray current

S(z∗,y,y‖) =
cy‖ f0

Γ
√

1+ y2
− cβsΓ(βs

√
1+ y2 + y‖)

∂ f0

∂y‖
(2.4)

Eq. (2.3) represents the generalization of the transport equation of Gleeson and Axford (1967)
accounting for shocks of arbitrary speed and anisotropic but gyrotropic cosmic-ray particle distri-
bution functions. For nonrelativistic shocks Gleeson and Axford (1967) showed that, apart from
sources, the cosmic-ray "jump" conditions at a shock front are simply that the isotropic phase space
density and the isotropic current F(y,z∗) =

∫ 1
−1 dµ f0(y,µ,z∗)/2, S̄(y,z∗) =

∫ 1
−1 dµS(y,µ,z∗)/2 are

continuous.

2.1 Diffusion approximation in the up- and down-stream medium

For the step-like shock velocity profile the Fokker-Planck transport equation (2.2) in the up-
(z∗ < 0) and downstream (z∗ > 0) medium is given by

∂

∂ z∗
[Γ(U + vµ) f0] =

∂

∂ µ

[
Dµµ(µ)

∂ f0

∂ µ

]
, (2.5)

We write f0(z∗,y,µ) =F(z∗,y)+ g(z∗,y,µ) as the sum of the isotropic part of the cosmic-ray phase
space density F(z∗,y) and the anisotropy g(z∗,y,µ). For small anisotropies |g(z∗,y,µ)| � F(z∗, p)
the diffusion approximation (Jokipii 1966) provides the diffusion-convection transport equation for
the isotropic phase space density F(z∗, p) and the anisotropy g(z∗,y,µ)

∂

∂ z
Γ[UF−Γκ

∂F
∂ z∗

] = 0, g(z∗,y,µ) =
vΓ

4
A(µ)

∂F(z∗,y)
∂ z∗

, A(µ) =
∫ 1

−1
dµ

(1−µ)(1−µ2)

Dµµ(µ)

−2
∫

µ

−1
dx

(1− x2)

Dµµ(x)
, κ =−v2

8

∫ 1

−1
dµ µA(µ) =

v2

8

∫ 1

−1
dµ

(1−µ2)2

Dµµ(µ)
(2.6)

Demanding as spatial boundary conditions Fu(z∗ = −∞,y1) = 0, Fd(z∗ = ∞,y2) = F2(y2), finite
Fu(z∗ = 0,y1) and Fd(z∗ = 0,y2) at the shock location z∗ = 0, and spatially-independent diffusion
coefficients κ1,2, the approximated up- and downstram anisotropic (but gyrotropic) phase space
distribution functions are

fu(z∗≤ 0,y1,µ1)' fu(0,y1,µ1)e
βucz∗
Γuκ1 , fu(0,y1,µ1)=F1(y1)B(µ1), fd(z∗≥ 0,y2,µ2)= fu(0,y1,µ1)

' F2(y2), B(µ1) = 1+
βuβ1c2

4κ1
A(µ1) = 1− 2βu

β1

A(µ1)∫ 1
−1 dµ1 µ1A(µ1)

(2.7)

Mostly important is the isotropy of the downstream distribution function in its rest frame!

2.2 Momentum spectrum of accelerated particles at the shock

We determine the momentum spectrum of accelerated cosmic rays at the shock by integrating
Eq. (2.3) from z∗ =−η to z∗ = η and considering the limit η → 0 resulting in

Sd(0,y2,y‖,2)−Su(0,y1,y‖,1)−Q0(y1,µ1)

3
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+cΓdβd lim
η→0

∂

∂y‖,2
[(βd

√
1+ y2

2 + y‖,2)][ fd(η ,y2,y‖,2)− fd(0,y2,y‖,2)]

+cΓuβu lim
η→0

∂

∂y‖,1
[(βu

√
1+ y2

1 + y‖,1)][ fu(0,y1,y‖,1)− fu(−η ,y1,y‖,1)]

= lim
η→0

[
∫ 0

−η

dz∗
∂

∂ µ1
Dµµ(µ1)

∂ fu(z∗,y1,µ1)

∂ µ1
+
∫

η

0
dz∗

∂

∂ µ2
Dµµ(µ2)

∂ fd(z∗,y2,µ2)

∂ µ2
] (2.8)

With the solutions (2.7) from the diffusion approximation the majority of terms in this lengthly
equation vanishes, leaving only

Sd(0,y2,y‖,2)−Su(0,y1,y‖,1) = Q0(y1,µ1) (2.9)

with

Sd(0,y2,y‖,2) =
cy‖,2 fd(0,y2,y‖,2)

Γd

√
1+ y2

2

− cβdΓd(βd

√
1+ y2

2 + y‖,2)
∂ fd(0,y2,y‖,2)

∂y‖,2
,

Su(0,y1,y‖,1) =
cy‖,1 fu(0,y2,y‖,1)

Γu

√
1+ y2

1

− cβuΓu(βu

√
1+ y2

1 + y‖,1)
∂ fu(0,y1,y‖,1)

∂y‖,1
(2.10)

Together with the continuity condition (Kirk and Schneider 1987)

fu(z∗ = 0,y1,µ1) = fd(z∗ = 0,y2,µ2) (2.11)

Eqs. (2.9) - (2.11) determine the momentum spectrum of accelerated particles at the shock. How-
ever, these equations still contain (y‖,1,y1) and (y‖,2,y2) which are related to each other using
relativistic kinematics. If

b =
βu−βd

1−βuβd
=

βu(r−1)
r−β 2

u
, Γr = (1−b2)−1/2 = ΓuΓd(1−βuβd) (2.12)

denote the relative velocity of the upstream medium with respect to the downstream medium and

the associated relative Lorentz factor, one finds generally with r = βu/βd and β1 = y1/
√

1+ y2
1

y2 =

√
Γ2

r (bµ1y1 +
√

1+ y2
1)

2−1, µ2 =
Γr(y1µ1 +b

√
1+ y2

1)√
Γ2

r (bµ1y1 +
√

1+ y2
1)

2−1
,

∂

∂y2
=

1

(1+bβ1µ1)

√
Γ2

r (bµ1y1 +
√

1+ y2
1)

2−1

[
(β1 +bµ1)

√
1+ y2

1
∂

∂y1
+

b(1−µ2
1 )

y1

√
1+ y2

1

∂

∂ µ1

]
,

∂ µ2

∂ µ1
=

Γry1(1+
bµ1
β1

)

[Γ2
r (bµ1y1 +

√
1+ y2

1)
2−1]3/2

(2.13)
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3. Transport equation at the shock

In terms of spherical momentum coordinates the up- and downstream cosmic-ray currents
(2.10) at the shock are

Su(0,y1,µ1)

cβuΓu
= [1+

β1µ1

βu
+2µ1(µ1 +

βu

β1
)]F1(y1)B(µ1)−F1(y1)(1−µ

2
1 )

∂

∂ µ1
[(µ1 +

βu

β1
)B(µ1)]

− 1
y2

1

∂

∂y1
[y3

1F1(y1)µ1(µ1 +
βu

β1
)B(µ1)] (3.1)

and, as fd(0,y2,µ2) = F2(y2) = F1(y1)I(b,y1) is independent of µ2,

Sd(0,y2,µ2)

cβdΓd
= µ2[µ2 +

β2

βd
+2(µ2 +

βd

β2
)]F1(y1)I(b,y1)−

1
y2

2

∂

∂y2
[y3

2µ2(µ2 +
βd

β2
)F1(y1)I(b,y1)],

(3.2)
where we use the continuity condition (2.11) and the last equation (2.13) to relate

F2(y2) =
1
2

∫ 1

−1
dµ2 fd(0,y2,µ2) =

1
2

∫ 1

−1
dµ2 fu(0,y1,µ1) =

F1(y1)

2

∫ 1

−1
dµ1

∂ µ2

∂ µ1
B(µ1)

= I(b,y1)F1(y1), I(b,y1) =
Γry1

2

∫ 1

−1
dµ1

B(µ1)(1+
bµ1
β1

)

[Γ2
r (bµ1y1 +

√
1+ y2

1)
2−1]3/2

(3.3)

With Eqs. (2.13) we express the downstream current (3.2) solely in terms of upstream momenta.
The cosmic-ray jump condition (2.9) then yields

βdΓdF1(y1)I(b,y1)(b+β1µ1)
( 1

βd(1+bβ1µ1)
+

b+β1µ1

β 2
1 W (b,µ1,y1)

+
2[βd(1+bβ1µ1)+b+β1µ1]

β 2
1 W (b,µ1,y1)

)
− βdΓd

(1+bβ1µ1)y3
1W

3
2 (b,µ1,y1)

(
(β1 +bµ1)

√
1+ y2

1
∂

∂y1
+

b(1−µ2
1 )

y1

√
1+ y2

1

∂

∂ µ1

)
(
(1+ y2

1)y1(b+β1µ1)W 1/2(b,µ1,y1)[b+β1µ1 +βd(1+bβ1µ1)]F1(y1)I(b,y1)
)

−[1+ β1µ1

βu
+2µ1(µ1 +

βu

β1
)]βuΓuF1(y1)B(µ1)+βuΓuF1(y1)(1−µ

2
1 )

∂

∂ µ1
[(µ1 +

βu

β1
)B(µ1)]

+
βuΓu

y2
1

∂

∂y1
[y3

1F1(y1)µ1(µ1 +
βu

β1
)B(µ1)] =

Q0(y1,µ1)

c
(3.4)

with W (b,µ1,y1) = (1+(bµ1/β1))
2 +(b2(1− µ2

1 )/y2
1). This equation holds for cosmic-ray par-

ticles of arbitrary momentum, shock waves of arbitrary speed and and general injection functions
Q0(y1,µ1).

As we are particularly interested in the isotropic momentum spectrum F1(y1) of accelerated
particles at the shock. we average Eq. (3.4) over µ1 leading after lengthly algebra (Schlickeiser
and Oppotsch 2017) to

Ω(b,y1)F1(y1)+
1
y2

1

d
dy1

(y3
1F1(y1)T (b,y1)) =

∫ 1
−1 dµ1 Q0(y1,µ1)

2
, (3.5)

in terms of the convection rate Ω(b,y1) and the acceleration rate T (b,y1).

5
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3.1 Solution of the transport equation at the shock

For the isotropic monomomentum injection rate Q0(y1,µ1) = Q1δ (y1−y0) the solution of Eq.
(3.5) is given by

F1(y1 ≥ y0) =
3Q1y2

0

y3
1T (y1,b)

exp[−
∫ y1

y0

dy
Ω(b,y)
yT (b,y)

] (3.6)

For the (in general momentum-dependent) power-law spectral index we obtain

q(r,y1) =−
d(lnF1/d(y/y0))

d ln(y1/y0)
= 3+ y1

d lnT (b,y1)

dy1
+

Ω(b,y1)

T (b,y1)
, (3.7)

depending on the ratio of the convection rate Ω(y1,b) and the acceleration rate T (y1,b).

3.2 Extreme nonrelativistic shock speeds

In the limit of extremely nonrelativistic shock speeds with b = 0 and Γr = 1 we find W (b =

0,µ1,y1) = 1 and I(b = 0,y1) = 1, so that the transport equation (3.5) for relativistic cosmic rays
reduces to

βdF1(y1)+
βu−βd

3y2
1

d(y3
1F1(y1))

dy1
=

1
2c

∫ 1

−1
dµ1 Q0(y1,µ1), (3.8)

agreeing exactly with the transport equation used in nonrelativistic acceleration theory. However,
this case is somewhat unphysical as b ' βu− βd = 0 implies βu = βd , so that no nonrelativistic
shock occurs.

3.3 Correct limit of nonrelativistic shocks

The correct limit of nonrelativistic shocks with small but finite values of b = (r− 1)βd � 1
yields to second order in βd � 1 for the convection and acceleration rates

Ω(b� 1,y1)' cβd [r−
r−1

3
β

2
1 +

β 2
d r(r−1)(7r−1)

3β 2
1

],

T (b� 1,y1)'
cβdr

3

(
1−3

r2β 2
d

β 2
1
− 1

r
[1+

(r−1)(7r−1)β 2
d

3β 2
1

][1+
2(3r+2)(r−1)β 2

d

5β 2
1

]
)
, (3.9)

for symmetric (Dµµ(−µ1) = Dµµ(µ1)) upstream Fokker-Planck coefficients. Because the convec-
tion rate is always positive, cosmic-ray particles only are accelerated for a positive acceleration rate
leading to the condition for the cosmic-ray velocities

β1 > βc(r)=
βu
√

uc(r)
r

, uc(r)=
45r3 +(r−1)(53r+7)

30(r−1)
[1+

√
1+

120(r−1)3(3r+2)(7r−1)
[45r3 +(r−1)(53r+7)]2

],

(3.10)
which settles the injection threshold for nonrelativistic shock acceleration. Only cosmic-ray parti-
cles with momenta or velocities y1 ' β1 > βc ' yc are accelerated by nonrelativistic shocks. The
injection threshold velocity βc(r), shown in Fig. 1, for all flow compression ratios is always larger
than
√

3βu.

6
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Figure 1: Injection threshold velocity βc/βu as a function of the flow compression ratio r for a nonrelativistic shock.

3.4 Power-law spectral index

With the rates (3.9) the power-law spectral index (3.7) is given by

q(r,y1 ≥ y0 > yc) = 3+
2y2

cβ 2
1

y2
1(β

2
1 − y2

c)
+

3r
r−1

β 2
1 − r−1

3r β 4
1 + r(r−1)2(7r−1)y2

c
9(r3−r2+1)

β 2
1 − y2

c
, (3.11)

which is shown in Fig. 2 for β1 > 1.1yc and different flow compression ratios.
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y 1
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.1
y c
)
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r = 7

Figure 2: Power-law spectral index for a nonrelativistic shock with βd = 10−4 as a function of particle
momentum y1 = 1.1yc(r) for three different flow compression ratios r = 3,4,7 (full curve).

For relativistic cosmic rays with β1 ' 1� yc the spectral index (3.11) approaches q(r,y1 >

1) = q(r) ' (5r− 2/(r− 1) = 2+ (3r/(r− 1)), which differs from the classical nonrelativistic
shock acceleration theory spectral index 3r/(r−1) by the additional factor 2.

7



P
o
S
(
I
C
R
C
2
0
1
7
)
2
8
5

Cosmic ray acceleration at shock waves R. Schlickeiser

For nonrelativistic cosmic rays with β1' y1� yc the spectral index (3.11) approaches q(r,yc�
y1 < 1) = q0(r)'= [3(2r−1)/(r−1)] = 1+q(r), which differs from the classical nonrelativistic
shock acceleration theory spectral index 3r/(r−1) by the additional factor 3.

Obviously, our strictly relativistic shock acceleration theory, accounting correctly for the dif-
ferent momentum coordinates in the up- and downstream media, where the diffusion approximation
has been applied, implies a much weaker efficiency for the acceleration of cosmic rays at nonrel-
ativistic shocks, when the nonrelativistic limit of small but finite shock speeds in the relativistic
theory is considered.

4. Summary and conclusions

The analytical theory of diffusive cosmic ray acceleration at parallel stationary shock waves
of arbitrary speed has been developed. Starting from the Fokker-Planck particle transport equation
in the mixed comoving coordinate system we derived for the first time the correct cosmic-ray jump
conditions at the shock relating the upstream and downstream anisotropic cosmic-ray currents. The
anisotropic upstream and downstream cosmic-ray currents are calculated from a diffusion approx-
imation of particle transport in the upstream and downstream medium. Pitch-angle averaging the
cosmic-ray current jump condition provides a general solution for the isotropic momentum spec-
trum of accelerated particles at the shock valid for arbitrary shock speeds, arbitrary cosmic-ray
momenta and general injection functions at the shock, determined by the ratio of general accel-
eration and convection rates. The correctly taken limit for nonrelativistic shock speeds leads at
relativistic cosmic-ray momenta to the power-law momentum spectrum F1(y1) ∝ y−q(r)

1 and at non-
relativistic cosmic-ray momenta to the power-law momentum spectrum F1(y1) ∝ y−(1+q(r))

1 , where
the power-law spectral index q(r) is a factor 2 greater than the standard spectral index from nonrel-
ativistic shock acceleration theory. Moreover, for nonrelativistic shock speeds we calculate for the
first time the injection velocity threshold βc ≥

√
3βu, settling the long-standing injection problem

for nonrelativistic shock acceleration.
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