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It is well known that the Heitler model and its extensions (like the Heitler-Matthews model)
describe qualitatively many fundamental properties of extensive air showers initiated in the at-
mosphere by the high-energy cosmic rays. Typically, only the secondary particle multiplicity
and the fraction of neutral-to-charged pions are considered as analytically treatable parameters
of hadronic interactions. Other relevant parameters of hadronic interactions such as inelasticity
and the lifetime of the leading particle are taken into account only in detailed Monte Carlo sim-
ulations. Here we present an extension of the Heitler-Matthews model that includes the leading
particle effect and analytically derive the number of muons produced in air showers in a self-
consistent way. In a second step we apply this model to calculate the dependence of the depth of
the shower center-of-gravity on various model parameters. In this way, we obtain predictions for
the depth of shower maximum, which is a well known observable sensitive to the mass of primary
particles and is regularly used in cosmic-ray research.
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1. Introduction

Despite the growing computing power available for the computation of simulations, under-
standing the physics of extensive air showers remains a very difficult problem. If one wants to have
large statistics or if a large parameter space is to be explored, it is impractical to simulate the full
showers at highest energies as the number of particles is too large.

Various approaches to solving this problem exist, among these are thinning algorithms [1, 2],
which reduce the number of particles whose trajectories and interactions have to be simulated, or
hybrid simulations [3–5]. Still, even with these methods it is difficult to study large parameter
spaces and to understand the physics origin of possible correlations. While detailed simulations
provide the most accurate predictions for air shower nowadays, it is, in general, not possible to
derive analytical relations between input and output parameters from them.

On the other hand, although numerically not reliable, analytic cascade models like the Heitler-
Matthews model [6] provide very useful insights in physics relations at the heart of cascades. The
simplicity of such models is well-suited for analytical calculations of shower observables, which
make it possible to study parameter relations very easily. Moreover, cascade models are very
illustrative and give often an fundamental understanding of the important processes at work in air
showers.

The predictions of the Heitler-Matthews model are qualitatively surprisingly accurate despite
the many simplifying assumptions made in the model. Motivated by this success, various exten-
sions have been developed since the publication of the original model in 2005. These include, for
example, the approximate treatment of energy-dependent secondary particle multiplicities [7] or the
treatment of the density profile of the atmosphere [8]. And already in the original publication [6],
an approximative attempt was made to include elasticity effects into the model, but a complete and
self-consistent Heitler-Matthews model with leading-particle effects was not developed.

In this work we introduce an extended Heitler-Matthews model that takes into account the
two most important features of the hadronic leading particle effect. These are the asymmetric
energy distribution (often parametrized by the elasticity of an interaction) and the possibility of
the immediate decay of the leading particle. In this model it is possible to calculate the number
of muons and the depth of shower maximum, the latter by using the shower center of gravity, in a
self-consistent way. As application we explore the dependence of these typical shower observables
on features of hadronic interactions. The detailed derivation of the results given here and additional
applications will be published in elsewhere [9].

Heitler-Matthews model. The Heitler-Matthews model is a very simple model which helps to
understand the development of the hadronic cascade of air showers and which makes predictions
for the mean values of observables [6, 10].

When a cosmic ray enters the atmosphere, it interacts with a nucleus and creates new parti-
cles, which in turn interact again. The assumption of the Heitler model is that particles interact
after traversing one interaction length λh and that in each interaction ntot particles are created
(nch charged pions and n0 neutral pions). This interaction model is shown on the left side of
the schematic above the Abstract. The neutral pions decay into electromagnetic particles and the
charged pions interact again until they decay into muons when their energy drops below the critical
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Figure 1: Shower evolution in the `k-plane. Thin red arrows denote leading branches while thick blue
arrows stand for trailing branches that feed the sub-showers (black dots). The diagonal line represents the
energy threshold below which sub-showers decay into muons (empty circles). L and T are the intersections
of the decay line with the ` and k axis, respectively.

energy Eπ
c . To allow for an analytical solution of the model, λh, ntot = nch +n0, fch = nch/ntot, and

Eπ
c are assumed to be constant throughout the whole cascade and do not depend on the depth of the

evolution.
The number of charged pions after n generations is simply nn

ch, energy of the particles after n
generations is E◦/nn

tot. Reaching the critical energy Eπ
c at generation nc = lnε◦/ lnntot with ε◦ =

E◦/Eπ
c , charged pions decay into muons, thus the number of muons is Nµ = nnc

ch = ε
γ
◦ , where

γ = lnnch/ lnntot = 1+ ln fch/ lnntot. Since 1/ntot < fch < 1 the muon elongation rate γ can only be
0 < γ < 1. The prediction of this model thus is that the energy dependence of the number of muons
is a power law, which is what is observed in experimental data.

Asymmetric extension. In the following we want to develop an extended Heitler-Matthews
model which takes the leading particle effect into account. We assume that in each interaction
of a particle with the nuclei of air ntot particles are created: one leading particle that carries away
fraction α = Elead/E of the energy of the incoming particle E and can decay into electromagnetic
particles with probability 1− p, and ntot−1 trailing particles that get equal shares of the remaining
energy, that is, they each end up with a fraction β = Etrail/E = (1−α)/(ntot− 1). Out of these
ntot− 1 trailing particles only the nch charged particles continue to feed the hadronic shower and
the remaining n◦ = ntot−1−nch feed the electromagnetic shower. This interaction model is shown
on the right side of the schematic above the Abstract.

2. Number of muons

After a certain number of generations n, the energy of each individual particle in the hadronic
shower is uniquely determined by its ancestry, that is, by the respective numbers of leading (`)
and non-leading (trailing) (k) branches found in their genealogy, where `+ k ≡ n. This energy
can be derived from the particle multiplication nn

tot = (1 + nch + n◦)n and energy conservation
(α +nchβ +n◦β )n expressions. Furthermore, we can sort particles at generation n of the hadronic
cascade into sub-showers with energy E`k = E◦α`β k where the potential number of particles in this
sub-shower is N′`k =

(
`+k
`

)
nk

ch. Nevertheless, the leading particle survives only with probability p
so that the mean number of particles in the sub-shower is N`k =

(
`+k
`

)
p`nk

ch. Note that particles in
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Figure 2: Left: Comparison of the exact results for the elasticity-dependence of the power-law exponent
derived from fitting to the exact summation (grey curves) with the exponent derived from the calculation for
different survival probabilities for the leading particle (dashed curves). We can see that the approximation
breaks down if many leading particles decay, that is, if p is small. The results of Matthews’ approximation
are shown in the dotted curve. Right: Parameter dependencies of the power-law exponent in our model. The
standard values used in our model (κ = 0.4, ntot = 10, p = fch = 2/3) are scaled with a factor f .

sub-shower {`,k} have been produced either by leading branch of the parent sub-shower {`−1,k}
(red arrows in Fig. 1) or by the trailing branches of the {`,k− 1} parent sub-shower (blue arrows
in Fig. 1). We can verify that indeed 1×N(`−1)k + nch N`(k−1) =

(
`−1+k
`−1

)
nk

ch + nch
(
`+k−1

`

)
nk−1

ch ≡(
`+k
`

)
nk

ch, since any number in Pascal’s triangle is a sum of the two proceeding numbers. When
the energy falls below a certain critical energy Eπ

c , the decay of pions becomes more important
than re-interaction. In our simplistic model, the charged particles below critical energy immedi-
ately decay into muons. From the particle energy we can derive critical conditions for ` and k,
− lnε◦ = ` lnα + k lnβ , where ε◦ = E◦/Eπ

c . For given leading order ` the maximal (critical) trail-
ing order is thus kc(`) = − lnε◦/ lnβ − ` lnα/ lnβ . With a = −1/ lnα and b = −1/ lnβ we can
introduce the maximal number of generations L in subshowers with only leading branches and the
maximal number of generations T with only trailing branches, L =− lnε◦/ lnα = a lnε◦ and T =

− lnε◦/ lnβ = b lnε◦, so that the critical trailing order can be written as kc(`) = T (1−`/L) where `
can run only between 0 and L. This critical condition is in Fig. 1 shown with a diagonal line. Equiv-
alently, we can turn the condition around and express the maximal leading order given the trailing
one, `c(k) = L(1− k/T ). It is now straightforward to write down the number of produced muons
from decays of subshowers in this discrete and simplistic model. As can be seen from the thick and
thin arrows crossing the diagonal decay line, the number of muons has two contributions, Nµ =

N(1)
µ + N(2)

µ = ∑
bLc
`=0 N(1)

µ` + ∑
bTc
k=0 N(2)

µk = ∑
bLc
`=0

(`+bkc(`)c
`

)
p`ndkc(`)e

ch + ∑
bTc
k=0

(b`c(k)c+k
k

)
pd`cenk

ch, where
the first term comes from the thick arrows and the second term is from the thin arrows crossing
the diagonal line. Note that all the expressions are integers and that correct conversion to the next
integer has been applied for each case. Since dxe = bxc+ 1, we can settle the expression by us-
ing only rounded-down values, Nµ = ∑

bLc
`=0

(`+bkc(`)c
`

)
p` nbkc(`)c+1

ch +∑
bTc
k=0

(b`c(k)c+k
k

)
pb`c(k)c+1 nk

ch. A
continuous approximation of this model is obtained by replacing discrete sums with integrals and
discrete variables with continuous ones, and approximating the binomial symbol with a Gaussian
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function
(n

k

)
≈ 2n N (k;n/2,

√
n/2). More details can be found in [9]. We also notice that since

T = − lnε◦/ lnβ and L = − lnε◦/ lnα we can say L = TA, where for the asymmetric HM model
we can introduce a logarithmic asymmetry A = lnβ/ lnα and a shorthand B = A/(A−1).

After some integration, we finally arrive at the number of muons,

Nµ = T [An1−d
ch + p1−d ]nT

ch
exp(T (B lnρ +u−2vw))√

2T (A−1)w
erfc((w− v)

√
T ), (2.1)

where u = 2B(2B−1), v =
√

2B, and w2 = 2B(B−1)+1/2− ln2+B lnρ . The muon exponent is
obtained from Nµ ∝ Em

◦ . Since dlnε◦ = dlnE◦ and dlnε◦ = − lnβ dT we can get the muon expo-
nent as m = dlnNµ/dlnE◦ = dlnNµ/dlnε◦ =−(1/ lnβ )(dlnNµ/dT ) =−(1/A lnα)(dlnNµ/dT ).
While the contribution to the muon exponent from the first two factors in Eq. (2.1) is trivial to ob-
tain, the contribution from the integral has more terms. Gathering only the T -dependent terms we
get the muon exponent as

m =− 1
A lnα

[lnnch +B lnρ +u−2vw+∆m(ε)] . (2.2)

where the large first two terms are canceled by the third to give m. 1 and the remaining ∆m(ε) term
is a small, energy-dependent deviation from the power-law. Note that the logarithmic asymmetry A
is a fundamental parameter of the extended Heitler-Matthews model and is a driving force behind
all of the results.

3. Mean depth of shower maximum

The calculation of the depth of shower maximum, Xmax, is hampered by the fact that one cannot
easily derive 〈Xmax〉 from the individual depths of maximum of sub-showers. This problem can be
avoided by calculating the shower center-of-gravity in atmospheric depth

cg[N(X)] =

∫
∞

0 X N(X)dX∫
∞

0 N(X)dX
, (3.1)

with N(X) being the number of charged particles at depth X . The center-of-gravity is a linear
operator and, knowing the depth of the center-of-gravity, the depth of shower maximum can be
calculated. The longitudinal profile of a shower is empirically well described by the Gaisser-Hillas
(GH) function [11],

GH(X ;Λ,X1,Xmax,Nmax) = Nmax

(
X−X1

Xmax−X1

) Xmax−X1
Λ

exp
(

Xmax−X
Λ

)
, (3.2)

where Λ and X1 are shower shape parameters and Nmax the number of particles at shower maximum.
After re-writing this function as Lambert W function [12] one gets

cg[GH(X ;Λ,X◦,Xmax)] = Xmax +Λ. (3.3)

The center-of-gravity of electromagnetic showers with energy E = εEem
c can be calculated within

cascade theory [13] and is given by

Xcg ≈ X◦ (lnε +δ
∗) , (3.4)

5
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with δ ∗ being an energy-independent offset that depends on the shower-inducing particle (δ ∗ = 1.2
for photon showers), X◦ = 36 g/cm2 being the EM radiation length in air, and Eem

c = 87 MeV
denoting the critical energy. The center-of-gravity of an electromagnetic sub-shower starting at
injection depth Xh is

Xcg = Xh +X◦ (lnε +δ
∗) . (3.5)

The total EM shower is then the sum of the EM sub-showers from all hadronic-shower nodes i.
The amplitude of the sum of EM sub-showers at a node point i of the cascade is proportional to the
total energy of the particles decaying to photons, which is the product of the number of decaying
particles Ni and their energy Ei,

F(X) = ∑
i

ε
∗
i f (X ;Xcg,i) = ∑

i
ε
∗
i f (X ;Xh,i +δ

∗+X◦ lnεi), (3.6)

where ε∗i = Ni εi is the total EM energy from sub-shower node i in units of Eem
c .

Since the center-of-gravity of a shower composed of sub-showers of shapes fi with weights wi

is simply

cg
[
∑iwi fi(X)

]
=

∑i wi cg[ fi(X)]

∑i wi
= ∑

i

wi

∑i wi
cg[ fi(X)], (3.7)

we can write the center-of-gravity of the total EM shower as

Xcg ≡ cg[F(X)] =
∑i ε∗i (Xh,i +δ ∗+X◦ lnεi)

∑i ε∗i
= 〈Xh〉∗+δ

∗+X◦〈lnε〉∗, (3.8)

where 〈x〉∗ = ∑ε∗i xi/∑ε∗i is the total particle energy-weighted mean of a quantity x. Note that
εem = ∑i ε∗i is the total energy that is transferred into the EM shower.

Summing over all hadronic nodes i = {`,k} at the depths Xh = λh(`+ k) is mathematically
involved and will be described in detail in Ref. [9]. Here we give only the result after applying
suitable approximations. To obtain a compact expression we introduce δ = δ ∗− ln2 and define

Ycg =
Xcg−X1−δX◦

X◦
. (3.9)

with η = λh/X◦ as the ratio of interaction lengths. Then, in the high-energy limit, the center-of-
gravity reads

Ycg = η
α p+βnch

1− (α p+βnch)
+ lnε +

αq lnα +βn◦ lnβ

αq+βn◦
+

α p lnα +βnch lnβ

1− (α p+βnch)

= lnε +
η(α p+βnch)+α lnα +(1−α) lnβ

αq+βn◦
. (3.10)

In this approximation, the depth of the center-of-gravity is proportional to the logarithm of
the energy. To a very good approximation this also holds for the depth of shower maximum, see
Eq. (3.3). We also confirm the prediction of the elongation rate theorem [14]. The elongation
rate De = d〈Xmax〉/dlnE◦ of a shower is expected to be X◦ as long as all interactions satisfy scal-
ing, i.e. the secondary particle distributions are universal functions of the variable ξ = Ei/Ei−1.
This condition is satisfied by construction in the Matthews-Heitler model with energy-independent
parameters.
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Figure 3: Left: Comparison of the depth of the center-of-gravity T = Xcg/X◦ calculated by exact summation
of all sub-showers and by using the high-energy approximation. Right: Dependence of the depth of the
shower center-of-gravity on parameters of hadronic interactions. The parameters are scaled with a factor f
relative to α = 0.4, ntot = 10, nch/ntot = 2/3, and p = 2/3.

As a cross-check we compare the approximate result for T = Xcg/X◦ with the exact summation
carried our numerically. In the following diagrams we use the parameters α = 0.4, p = 2/3,
ntot = 10, nch/ntot =: fch = 2/3, λh = 90 g/cm2, X◦= 37 g/cm2, X1 = 90 g/cm2, Eπ

c = 30 GeV, Eem
c =

87 MeV and δ ∗ = 1.2 if not otherwise indicated. The result for the high-energy approximation
E◦→ ∞ approaches very fast that of the exact summation, see Fig. 3-left.

In Fig. 3 (right), the predictions of our model are shown for different parameters character-
izing the underlying hadronic interactions. An increased elasticity strongly increases the depth
of the shower center-of-gravity and an increased multiplicity decreases it. Similarly, an increase
of the ratio fch will shift the shower center-of-gravity to greater atmospheric depths. The results
found for the analytical approximation are in good qualitative agreement with detailed numerical
simulations [15].

4. Conclusions

We have extended the Heitler-Matthews model for extensive air showers to account for the well-
known leading particle effect in hadronic interactions. Two new parameters were introduced. One
parameter describes how large an energy fraction of the projectile particle is transferred to the
leading secondary hadron. The second parameter allows us to consider the case that a fraction of
these leading particles will decay to electromagnetic particles before interacting. With pions being
the most abundant secondary particles of hadronic interactions, the bulk of interactions in an air
shower are produced by charged pions. With about a probability of ∼ 30% a charged pion will
produce a leading neutral pion that will decay before interacting, except at pion energies Eπ &
1019 eV. Hence, the possible EM decay of the leading particle is an important process that has to be
considered for improving the predictions of cascade models such as the Heitler-Matthews model.

We have shown that it is possible to obtain analytic expressions for the number of muons
and the mean depth of shower maximum within this model. This allows us to study analytically
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the relation between the parameters of the interaction model and general features of extensive air
showers. The parameter dependences derived in the analytic model qualitatively agree with those
found in detailed numerical shower simulations [15].

With respect to the number of muons, it was shown that the ratio of charged to total multiplicity
and the leading particle survival probability have the largest influence on the number of muons at
ground. The elasticity and the multiplicity do not strongly influence the number of muons.

Using the depth of the center of gravity of the longitudinal air shower profile as a proxy for the
shower evolution, we were able to calculate predictions for the mean depth of shower maximum.
A compact expression was derived in the high-energy limit. Within the extended Heitler-Matthews
model presented here, the shower maximum is mainly influenced by the elasticity, the multiplicity,
and the ratio of charged particles to total number of particles produced in each interaction.
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