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High-energy atmospheric muons can yield information about the prompt contribution to
atmospheric lepton fluxes. Relevant to studying the flux of astrophysical neutrinos, this also
complements results from collider experiments in the forward region. A machine-learning based
selection has been developed, identifying high-energy (Eµ & 1 TeV) leading muons which
dominate the energy losses detected in IceCube. The sample is then analyzed in two ways.
First, the correlation between the muon energy in ice and the muon energy at its production
in the atmosphere, which can be derived from simulations based on Monte-Carlo methods, is
used for estimating the differential energy spectrum of atmospheric muons in the energy range
between 6 and 400 TeV. The best-fit power law index describing the atmospheric muon flux
is found to be consistent with the result of a previous analysis. Second, dedicated simulations
are used to show a proof-of-concept for reconstructing the effective Feynman-x of atmospheric
muons by combining information from IceCube and IceTop. A robust correlation between true
and reconstructed effective Feynman-x is found, enabling future studies of this quantity with the
IceCube Neutrino Observatory.
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1. Introduction

IceCube is a 1 km3 neutrino detector installed in the ice at the geographic South Pole [1]1

between depths of 1450 m and 2450 m, completed in 2010. Reconstruction of the direction, energy2

and flavor of the neutrinos relies on the optical detection of Cherenkov radiation emitted by charged3

particles produced in the interactions of neutrinos in the surrounding ice or the nearby bedrock. In4

2013, the IceCube Collaboration found evidence for an astrophysical flux of neutrinos [2]. Since5

atmospheric leptons are the main background to such a flux, a detailed understanding of them is6

essential. One important aspect is the contribution of prompt decays from short-lived hadrons, that7

is, from charmed mesons and unflavored vector mesons [3]. Because of their short lifetime, these8

intermediate air shower particles usually decay before interacting, yielding harder lepton spectra9

than those induced by light mesons like π
± and K± [4]. With a rate of about 2100 s−1, muons10

originating from extended air showers are the most frequent particles triggering IceCube and hence11

represent the main background for the detection of neutrinos. At the same time, however, muons12

provide an excellent basis for measurements themselves. After a description of the simulations in13

Section 2 and a presentation of the machine-learning based selection used for selecting high-energy14

leading muons in Section 3, a measurement of the differential energy spectrum of high-energy15

atmospheric muons detected in IceCube and IceTop is presented and discussed in Section 4. The16

production of high-energy atmospheric muons depends on the energy Ecr of the primary cosmic17

ray inducing the extended air shower and the fraction of this energy that is transferred to the muon.18

We define this fraction as the effective Feynman-x in the laboratory system:19

xlab
F,eff ≡

Eµ

Ecr
(1.1)

with the muon energy Eµ at its production in the atmosphere. A machine-learning approach for20

reconstructing xlab
F,eff combining information from IceCube and IceTop is presented in Section 5,21

followed by the conclusions and an outlook in Section 6.22

2. Simulations

The starting point for all simulations used in this analysis are primary cosmic rays on the level23

of the atmosphere that are weighted to a model of the spectrum and composition of cosmic rays24

based on the available cosmic ray data. Here, the parametrization implementing the Hillas model25

with three populations and a mixed third population (H3a) [5] is used. The air shower development26

is then simulated using the CORSIKA [6] package with Sibyll 2.1 [7] for the high-energy and27

FLUKA [8, 9] for the low-energy hadronic interactions. The following simulation steps, including28

the propagation of the particles through the ice, the photon emission and the IceTop and IceCube29

detector simulations, are accomplished using standard IceCube software packages. Two different30

simulation types are used: standard IceCube simulations covering the five most important element31

groups H, He, CNO, MgAlSi and Fe over an energy range of 5 < log10 Ecr/GeV < 11 and with32

about 3.5×109 simulated showers. These simulations are used for the event selection described33

in Section 3 and the unfolding of the muon energy spectrum in Section 4. The second type of34

simulations uses a kill-threshold principle, where only showers that are capable of producing a35
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high-energy muon exceeding a certain energy and/or effective Feynman-x are propagated, leading36

to a better efficiency in simulating showers with a single high-energy muon. Also, on the contrary to37

the standard simulations, the kill-threshold simulations contain the electromagnetic component of38

the shower as well as the IceTop response, which are necessary for the machine-learning algorithm39

presented in Section 5.2.40

3. Event Selection and Data Sample

In this section, the event selection used in Section 4 and 5 is presented. After cuts that ensure a41

minimum quality of the sample (Section 3.1), a machine-learning approach implementing a random42

forest [10] classification is described in Section 3.2. The data sample used in Section 4 corresponds43

to a detector livetime of 168.2 days, which is also chosen as the normalization of the simulations.44

3.1 Minimum Quality Cuts

In order to obtain the desired sample containing high-energy events with successful reconstructions45

for direction and energy that traverse IceCube as well as IceTop, the minimum quality cuts in Table46

1 are applied to data and simulations.47

No. Cut Purpose

(1) Qtot > 1000 photo-electrons Select high-energy events
(2) Directional reconstruction [11] successful Required for (3)
(3) rIceTop < 500m Select events traversing IceTop
(4) Energy reconstruction [12] successful Muon energy proxy
(5) Ltrack ≥ 720m Remove short tracks

Table 1: Overview of the minimum quality cuts using the total charge Qtot deposited in IceCube, the distance
rIceTop between the intersection of the trajectory with the surface plane and the center of IceTop and the track
length Ltrack inside the detector (as determined by the energy reconstruction [12]).

3.2 Random Forest Classification

High-energy track events in IceCube originating from atmospheric muons usually contain a large48

number of muons. Since the number of muons in a muon bundle is not directly measurable it is49

difficult to associate the total measured energy in-ice to the true energy of a single high-energy50

muon. In order to ensure a good energy reconstruction, we define signal and background as the51

following:52

signal ≡ single muon event :=
Eµ,max

Eµ,bundle
> 0.5, (3.1)

background ≡ muon bundle event :=
Eµ,max

Eµ,bundle
≤ 0.5, (3.2)

with the energy Eµ,max of the most energetic muon in the muon bundle and Eµ,bundle as the total53

energy of the muon bundle. Muons with an energy & 30TeV at the surface will almost always be54
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the leading muon in the shower (compare [13]). The correlation and ratio of reconstructed and true55

energy of the most energetic muon in the shower for single muon events after the minimum quality56

cuts are shown for the standard simulations in Figure 1.57
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Figure 1: Correlation (left) and ratio (right) of reconstructed and true energy of the most energetic muon in
the shower for single muon events after the minimum quality cuts using standard simulations.

The Pearson product-moment correlation coefficient between true and reconstructed muon energy58

is rPearson = 0.75 with the mean of the ratio on a logarithmic scale µ = 0.40 and the standard59

deviation of the distribution σ = 0.33. In order to obtain a sample of single muon events, the60

standard simulations are used to train a random forest classifier that separates between single muon61

events and muon bundle events. Before training the model, two additional straight cuts on the62

ratio qmax/Qtot between the maximum charge qmax deposited in a single digital optical module63

(DOM) divided by the total charge Qtot deposited in IceCube and on the direct length Ldir of the64

track given by DOMs that are hit within a certain time window around the first hit of an event are65

applied. The first cut, qmax/Qtot < 0.4, removes events where the total brightness in the detector is66

dominated by a single DOM and which are not appropriately described by simulations. The second67

cut, Ldir > 440m, ensures a decent track reconstruction. For the random forest classification, the68

implementation from scikit-learn [14] is used. The random forest is trained using 16 attributes,69

200 estimators and 4 features per node. The resulting separation power can be seen in Figure 2 for70

the standard simulations after the minimum quality cuts and the two additional cuts described in71

this section. For a score & 0.5 the sample is dominated by single muon events. In order to ensure72

the robustness of the model, a 5-fold cross-validation yielding values for purity and efficiency73

depending on the chosen cut on the random forest score is implemented; the resulting values can74

be seen in Figure 3.75

4. Differential Energy Spectrum

4.1 Unfolding

Whereas for the differential energy spectrum of atmospheric muons their energy at production in76

the atmosphere is of interest, the muon energy is actually measured in-ice. In order to account77

for effects like a limited energy resolution and stochastic energy losses during the propagation78
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Figure 2: Distribution of the classification score for
the standard simulations after the minimum quality
cuts and the two additional cuts described in this sec-
tion.
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Figure 3: Result of the 5-fold cross-validation of the
random forest model showing purity and efficiency
as functions of the chosen cut on the random forest
score.

of the muons through the ice, the resulting spectrum of the observed muon energy is unfolded79

using the software package TRUEE [15]. The unfolding is applied to the data after applying a cut80

(score > 0.55) on the output score of the random forest from Section 3.2, resulting in a purity of81

(79.7±1.3)% and an efficiency of (35.1±0.5)%. The unfolding is performed in 9 logarithmic82

energy bins with five bins per decade in the energy range 3.8 < log10 Eµ/GeV < 5.6 and uses the83

three observables Eµ,reco, Ldir and θzen . The chosen parameters for the unfolding are 4 degrees of84

freedom and 9 knots. These parameters determine the strength of the regularization (see [15] for a85

detailed discussion) and were found to work well. In order to estimate the uncertainty of the result86

due to limited statistics in the simulations, the unfolding is repeated ten times using resampled87

simulation datasets, yielding an uncertainty σMC, which is then combined with the statistical error88

σstat to obtain the overall uncertainty in each bin:89

σstat/MC =

√
σ

2
stat +σ

2
MC . (4.1)

4.2 Acceptance Correction

Only events that trigger IceCube and pass all selection steps are represented in the final sample and90

thus represented in the unfolded spectrum. In order to correct for the limited acceptance due to91

these effects, an external simulation dataset [16] is used for obtaining the surface flux predicted for92

Sibyll 2.1 in the zenith range that is covered by the sample after applying all cuts (cosθzen > 0.88).93

4.3 Spectrum

The unfolded datapoints with errorbars σstat/MC compared to different predictions and a previous94

all-sky result can be seen below. Figure 4 compares the datapoints to the simulated conventional95

muon flux at the surface from [16], a semi-analytical prediction for the prompt contribution to the96

muon flux based on the model by Enberg, Reno and Sarcevic [17] using the reweighting approach97

discussed in [13] as well as a best-fit linear combination of these two contributions. Figure 5,98

on the other hand, compares the unfolded datapoints (cosθzen > 0.88) to the best-fit power law99

from [13] describing the average all-sky flux above approximately 15 TeV. The difference in the100
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normalization between the result presented here and the result from [13] can be explained by the101

zenith dependency of the conventional flux, which is in good approximation inversely proportional102

to cosθzen [13].103
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Figure 4: Plot showing the unfolded datapoints
(black points), a prediction for the conventional flux
from [16] (red triangles), for the prompt flux based
on the model from [17], using the reweighting de-
scribed in [13] (blue points), and the best-fit linear
combination (green squares). All datapoints describe
the flux in the zenith range cosθzen > 0.88.
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Figure 5: Plot showing the same unfolded datapoints
as in Figure 4 (black points), a best-fit power law de-
scribing the data (dashed red line) and, for compari-
son, the best-fit power law from [13] for the average
all-sky flux (dashed black line). Shaded areas indi-
cate the uncertainty of the fit parameters (for [13] this
includes systematic uncertainties).

The unfolded data points are also fitted to a power law with the best-fit in the zenith range cosθzen >104

0.88 and the energy range 3.8 < log10 Eµ/GeV < 5.6 as the following:105

dΦ

dEµ

= 9.0+0.3
−0.3 ×10−17s−1 cm−2 sr−1 GeV−1 ×

(
Eµ

50TeV

)−3.74±0.03

,

with χ
2/ndof = 3.6/7. In order to compare the datapoints against the conventional and prompt106

predictions in Figure 4, a superposition of the form107

f (Eµ) = aconv ×
(

dΦ

dEµ

)
conv

+aprompt ×
(

dΦ

dEµ

)
prompt

is fitted to the data. The best-fit result yields aconv = 1.05± 0.03 and aprompt = 1.58± 0.91 with108

χ
2/ndof = 6.0/7.109

5. Effective Feynman-x

5.1 Phase Space

In Figure 6, the phase space in true Monte-Carlo variables with respect to primary cosmic ray110

energy and effective Feynman-x and after the minimum quality cuts is shown for single muon111

events (left) and muon bundle events (right).112

Single muons, carrying most of the energy in the bundle, are also found at larger values of the effec-113

tive Feynman-x (xlab
F,eff & 10−3) and small primary energies (Ecr . 108 GeV). Muon bundle events,114

on the other hand, are shifted towards higher primary energies and smaller effective Feynman-x.115
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Figure 6: Phase space in true MC variables primary energy and effective Feynman-x for single muon events
(left) and muon bundle events (right) for the standard simulations after the minimum quality cuts.

5.2 Reconstruction

The effective Feynman-x of atmospheric muons is reconstructed using a machine-learning based116

regression. The regression is trained using the dedicated simulations described in Section 2 after117

applying a cut (score > 0.8) on the output score of the random forest from Section 3.2, resulting118

in a purity of (90.8±1.5)% and an efficiency of (12.1±0.3)%. Again, the implementation from119

scikit-learn [14] is used, employing 23 overall features, 400 estimators and 6 features per node. The120

resulting correlation and ratio between reconstructed and true effective Feynman-x can be seen in121

Figure 7. The Pearson product-moment correlation coefficient of true and reconstructed effective122

Feynman-x is rPearson = 0.62 with the mean of the ratio on a logarithmic scale µ = 0.11 and the123

standard deviation of the distribution σ = 0.27.124
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Figure 7: Correlation (left) and ratio (right) of reconstructed and true effective Feynman-x after the mini-
mum quality cuts, the additional cuts described in Section 3.2 and a cut on the random forest classification
score (score > 0.8) using the dedicated simulations described in Section 3. The dashed black line in the left
plot indicates a line through the origin.
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6. Conclusion and Outlook

High-energy atmospheric muons were studied with respect to their differential energy spec-125

trum and the fraction of energy they take from the primary cosmic ray. The differential energy126

spectrum in the zenith range cosθzen > 0.88 and the energy range 3.8 < log10 Eµ/GeV < 5.6, us-127

ing 168.2 days of detector livetime, was found to follow a power law with dΦ/dEµ ∝ Eµ

−3.74±0.03,128

which is in agreement with the all-sky result from [13]. A linear combination of conventional129

(Sibyll 2.1) and prompt (ERS) predictions was fitted to the unfolded data points, yielding aconv =130

1.05± 0.03 and aprompt = 1.58± 0.91 as best-fit multiples of these predictions. The stated un-131

certainties are statistical only and do not contain systematic effects. A multivariate method was132

presented, capable of reconstructing the fraction of the primary cosmic ray energy that is trans-133

ferred to the most energetic muon in the shower with a correlation coefficient of rPearson = 0.62 and134

the standard deviation of the ratio of true and reconstructed values σ = 0.27. In the future, these135

studies will be extended by using more data, by increasing the effective livetime of the simulations136

and by studying systematic uncertainties on the hadronic interaction models, the mass composition137

of cosmic rays, ice-properties and the snow effect on IceTop.138
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