PoS - Proceedings of Science
Volume 301 - 35th International Cosmic Ray Conference (ICRC2017) - Session Cosmic-Ray Indirect. CRI-instrumentation EAS
New gamma/hadron separation parameters for a neural network for HAWC
E. Bourbeau, T. Capistrán*, I.D. Torres Aguilar, E. Moreno Barbosa  on behalf of the HAWC Collaboration
Full text: pdf
Pre-published on: August 16, 2017
Published on: August 03, 2018
The High-Altitude Water Cherenkov experiment (HAWC) observatory is located 4,100 meters above sea level. HAWC is able to detect secondary particles from extensive air showers (EAS) initiated in the interaction of a primary particle (either a gamma or a charged cosmic ray) with the upper atmosphere. Because an overwhelming majority of EAS events are triggered by cosmic rays, background noise suppression plays an important role in the data analysis process of the HAWC observatory. Currently, HAWC uses cuts on two parameters (whose values depend on the spatial distribution and luminosity of an event) to separate gamma-ray events from background hadronic showers. In this work, a search for additional gamma-hadron separation parameters was conducted to improve the efficiency of the HAWC background suppression technique. The best-performing parameters were integrated to a feed-foward Multilayer Perceptron Neural Network (MLP-NN), along with the traditional parameters. Various iterations of MLP-NN's were trained on Monte Carlo data, and tested on Crab data. Preliminary results show that the addition of new parameters can improve the significance of the point source at high-energies (~ TeV), at the expense of slightly worse performance in conventional low-energy bins (~GeV). Further work is underway to improve the efficiency of the neural network at low energies.
DOI: https://doi.org/10.22323/1.301.0394
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.