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We improve on the model of the Galactic Magnetic Field (GMF) from Jansson & Farrar (2012),
which was constrained using all-sky rotation measures of extragalactic sources and polarized and
unpolarized synchrotron emission data from WMAP. We have

• developed several alternative functional forms for the coherent and random components

• used newer synchrotron products from Planck and WMAP

• used new models of the densities of thermal electrons and cosmic-ray electrons.

The differences in the resultant GMF models, depending on which parameterization of the field,
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at ultra-high energies.
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1. Introduction

Spiral galaxies such as the Milky Way are known to be permeated by magnetic fields (see
e.g. [1, 2, 3]). Global models of these fields are frequently used to study a variety of astrophysical
phenomena including star formation, gas dynamics, the propagation and acceleration of low-energy
cosmic rays and the deflections of the arrival directions of ultrahigh-energy cosmic rays.

The hitherto most complete attempt to determine the global structure of the Galactic magnetic
field (GMF) is the model of Jansson & Farrar [4, 5] (JF12). In this model, the GMF is described
by a superposition of three divergence-free large-scale regular components: a spiral disk field, a
toroidal halo field and a poloidal field (“X-field”). In addition, there is a turbulent field model
whose disk component is modeled following the same spiral structure as the regular component
and there is also an extended random halo field. The 22+14 parameters of the regular and random
magnetic field are constrained by:

(a) Multi-frequency radio observations of the Faraday rotation of extragalactic radio sources.
The corresponding rotation measures (RMs) are proportional to the line-of-sight integral of
the longitudinal magnetic field, weighted with the density of thermal electrons of the warm
ionized medium of the Galaxy.

(b) Measurements of the polarized synchrotron emission of cosmic-ray electrons in the regular
magnetic field of the Galaxy. The total polarized intensity (PI) is proportional to the line of
sight integral of the ordered component of the transverse magnetic field strength, weighted by
the density of cosmic-ray electrons. The direction of the transverse magnetic field component
can be inferred from the Stokes parameters Q and U.

(c) Measurements of the total (polarized and unpolarized) synchrotron intensity I, which is a
line-of-sight integral depending on the product of cosmic-ray electron density and total trans-
verse magnetic field strength (coherent and random).

In this contribution we investigate the uncertainties in our inference of the GMF introduced
by the various assumptions entailed in the global modeling of the field, especially the functional
forms used for the field characterizations and the models for the thermal and cosmic-ray electrons.
In addition, we consider uncertainties due to uncertainties in the observables used to constrain the
field model.

After describing the data analysis procedure in the next section, various model variations will
be discussed in Sec. 3. The finite number of variations investigated can of course not provide an
exhaustive investigation of models compatible with the data, therefore the results presented in this
article provide a lower limit on the uncertainties of the GMF, in the absence of further input to
select among or discard some of the GMF model variations. As an example of the impact of the
uncertainties, we discuss in Sec. 4 the uncertainties of the arrival directions of ultrahigh energy
cosmic rays due to the deflections in an uncertain Galactic magnetic field.

The analysis presented here follows closely the procedure developed for the JF12 model. We
use the same catalogue of 40403 extragalactic RMs and bin it into 3072 equal-area HEALPix pix-
els on the sky to define the mean and variance of the RMs in a particular direction. A similar
procedure is applied to the synchrotron maps from WMAP and Planck. For each model of the
GMF we produce predictions of the observables RM, Q, U and I by a line-of-sight integration of
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the magnetic field weighted with the thermal electrons density and cosmic-ray electrons spectrum
respectively. For this purpose we developed a new computational framework that allows for adap-
tive step control during the integration and a highly modular model configuration that is needed for
the variations described in the next section. A comparison of the measured observables with the
simulated predictions from the JF12 model is shown in the figure below.

Figure 1: Measured (left column) and simulated (right column) sky maps of rotation measures (top), polarized syn-
chrotron emission (Stokes Q and U parameters in the two middle panels) and total synchrotron intensity (bottom). The
synchrotron data are from [6] and the GMF model is JF12 [4, 5].

2. Data Analysis

The parameters of the different GMF models are optimized by minimizing the variance-
weighted pixel-by-pixel difference between the predicted and measured observables. In [4], this
optimization was performed with a time-intensive MCMC sampling of the posterior distribution
of the model parameters. The model variations investigated in the present work usually lead to
much larger differences in the estimates of the GMF than the single-model statistical uncertainties.
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Therefore the posterior distribution of the parameters are of secondary importance and the n model
parameters can be optimized more efficiently with multi-dimensional gradient search [7]. For each
model variation, the gradient search is perform typically 50 times in parallel starting at random
positions in the n-dimensional parameter space to assure that the global minimum is found.

3. Model Variations

In the following we will give a brief overview of the investigated modeling variations. The
different models are listed in Table 1. As can be seen in the last column of this table, all of the
20 modeling variations give a reasonable description of the data with reduced χ2s ranging from
0.78 to 1.22. Note that for all models we use the same relative weighting of the χ2 contributions of
the RM and synchrotron data. Moreover, the same pixel mask is applied in all cases (see [4] for a
description of the mask). It should be emphasized that due to differences in the data processing (es-
pecially in the synchrotron data products), the reduced χ2 is not always appropriate for comparing
the fit quality in the model variations, as discussed below.

Parameterizations We tested several alternatives to the parameterizations of the coherent field
used in the JF12 model. All these alternatives are divergence-free, like the original functional
forms. First, we replaced the parametric X-field of JF12 with “model C” from [8] (variation b). The
main difference between these two models is that in the former the angle of the poloidal field lines
with respect to the Galactic plane is kept constant above a certain galacto-centric radius, whereas in
“model C” this angle evolves with radius and height. (The smoother behavior of “model C" at the
Galactic plane is unobservable due to random fields.) In the next step we restrict the radial extent
of the toroidal field to be the same in the Northern and Southern hemisphere of the Galaxy leading
to a best-fit value of rN/S = 11.3± 0.3 kpc (variation c). Introducing a Galactic warp [9] into the
model (variation d) leaves most of the line-of-sights unchanged and introduces only minor changes
to the simulated observables at low latitudes close to the Galactic anti-center. The disk field of JF12
is implemented as a logarithmic spiral with a pitch angle of 11.5◦ and eight discontinuous magnetic
field “arms” following [10]. We replaced this ansatz by a divergence-free smooth spiral field with
free pitch angle (variation e). Interestingly, the best fit gives a pitch angle of (14.5±0.6)◦, i.e. close
to the pitch angles determined for the spiral segments of the Milky Way (see e.g. [11]) in accordance
to observations of external galaxies [12]. Finally, we replaced the independent toroidal and poloidal
components of JF12 by a “twisted X-field”, i.e. a originally poloidal field that is evolved in time
taking into account the radial and vertical shear of the Galaxy. Allowing for different parametric
forms of the radial dependence of the initial field yields model variations f and g [13].

Despite the considerable differences between these parameterization, the quality of the fits is
similar for each of them (cf. Table 1), i.e. the data does not clearly discriminate between these
model variations at this stage.

Synchrotron Data Products As the baseline for the comparisons considered in this work, we
use the 7-year WMAP synchrotron maps [6], as originally used in JF12. But for variations h-l
we replace that synchrotron data with different synchrotron products from the 9-year final WMAP
data release [14] and the Planck 2015 data release [15]. These products differ in the constraints
applied to the measured Galactic microwave emission data to extract the synchrotron component.
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id disk toroidal poloidal thermal cosmic-ray synchrotron misc. χ2/ndfmodel model model electrons electrons data product

Parametric models
a JF JF JF NE2001 GPJF WMAP7 - 1.10
b JF JF FTC NE2001 GPJF WMAP7 - 1.09
c JF JFsym FTC NE2001 GPJF WMAP7 - 1.11
d JF JFsym FTC NE2001 GPJF WMAP7 warp 1.11
e UF JFsym FTC NE2001 GPJF WMAP7 - 1.09
f UF UFa NE2001 GPJF WMAP7 - 1.14
g UF UFb NE2001 GPJF WMAP7 - 1.09
Synchrotron products
h JF JFsym FTC NE2001 GPJF WMAP9base - 1.22†

i JF JFsym FTC NE2001 GPJF WMAP9sdc - 1.24†

j JF JFsym FTC NE2001 GPJF WMAP9fs - 1.11†

k JF JFsym FTC NE2001 GPJF WMAP9fss - 1.22†

l JF JFsym FTC NE2001 GPJF Planck15 - 0.78†

Thermal electrons
m JF JFsym FTC YMW17 GPJF WMAP7 - 1.21
n UF JFsym FTC YMW17 GPJF WMAP7 - 1.14
o JF JF FTC NE2001 GPJF WMAP7 κ =−1 1.05∗
p JF JF FTC NE2001 GPJF WMAP7 κ =+1 1.05∗
q JF JFsym FTC NE2001 GPJF WMAP7 HIM 1.12

Cosmic-ray electrons
r JF JFsym FTC NE2001 O13a WMAP7 - 1.13
s JF JFsym FTC NE2001 O13b WMAP7 - 1.12
t JF JFsym FTC NE2001 S10 WMAP7 - 1.13

Table 1: Summary of model variations investigated in this paper. The original JF12 model corresponds to the first row
(model a) and the reference model is given in the third row (model 3). The goodness of fit for describing the RM, Q and
U data is given in the last column with the exception for the combined fits of coherent and random field (marked with a
∗), where the χ2 also includes the contribution from the total intensity I. The χ2s of the fits with different synchrotron
data products (marked with a †) used different weights in the fits derived from these products.

WMAP7 and WMAP9base fit the data with a sum of synchrotron, free-free and dust emission. All
other models include a spinning dust component to describe the “anomalous microwave emission”.
Moreover, different constraints to the spectral index of the synchrotron emission are applied in dif-
ferent products. It must be emphasized that the sizable differences in the reduced χ2s for variations
h− l visible in Table 1 originate from the different variances inferred from the sub-pixel variation
in the data products, reflecting the smoothing procedure of [15]. Thus the relative reduced χ2s here
are not indicative of a better or worse description of the data.

The differences between the various synchrotron products are small for the polarized emission
and therefore the inferred coherent magnetic field does not change much when switching from
one data product to another. However, as already noted in [16], the different treatment of the
anomalous microwave emission in the models used for the different synchrotron products strongly
affects the estimated total synchrotron intensities, and thus the random magnetic field component.
This difference leads to a reduction of random field strength, by up to a factor of four in the disk,
relative to JF12 [13].

Thermal Electrons A model of the density of thermal electrons in the Galaxy (ne) is needed
to predict the rotation measures for a given magnetic field configuration. Estimates of the spatial
distribution of ne rely mostly on measurements of the dispersion measures of Galactic pulsars
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and to a lesser extent on scattering measures of Galactic and extragalactic sources. We tested the
impact of two different models for the thermal electron densities: NE2001 [17], with the updated
scale height of the thick disk from [18], and YMW17 [19]. While the newer YMW17 model relies
on more dispersion measures from pulsars with measured distances, the more important difference
between the two models lies in their particular parametric choices for the model components, such
as the thickness and pitch angles of the spiral arms. Both models give a similar performance when
comparing the predicted to measured dispersion measures. The slightly worse χ2 values of the
YMW17 variations m and n, with respect to the corresponding NE2001 fits c and e, can be partially
attributed to worse description of the RMs in the direction of the Gum nebula when using YMW17.
The main difference in the inferred magnetic fields is a larger field strength in the halo: due to the
lower density of electrons at large Galactic height in the YMW17 model, the fitted field strengths
for the toroidal and poloidal components are about a factor two larger than if determined using
NE2001. We also tested the effect of adding the large-scale hot ionized medium from [20] to the
calculation of RMs, but no big effect on the inferred GMF was found (variation q).

In a further ne-related variation, we tested the impact of assuming a correlation, κ , between
the magnetic field strength and the thermal electron densities. As argued in [21], pressure balance
in the magneto-ionic medium can lead to an anti-correlation of ne and the magnetic field, leading
to an underestimate of the coherent magnetic field strength inferred from rotation measures if the
anti-correlation is ignored. On the other hand, compression of the magneto-ionic medium causes an
enhancement of both the magnetic field strength and gas densities, leading to positive correlation
between ne and the magnetic field resulting in an overestimate of Bcoh inferred from RMs with
κ = 0. We studied the two extreme cases κ = −1 (variation o) and κ = +1 (variation p) by
performing a combined fit of the coherent and random fields using the modified relations between
RM and the magnetic field given in [21]. As expected, very different coherent magnetic field
strengths were found for the two cases. The total energy of the coherent field in the Galaxy is
3.5× 1055 erg for κ = −1 and 3.8× 1054 erg for κ = +1. Under the standard assumption of no
correlation (variation b), the coherent energy is 1.2× 1055 erg. Note that these are upper bounds
on the effects of a possible ne-B correlation, because a) the assumed correlation coefficients are at
the extreme values and b) the synchrotron product used in the comparison is the baseline one from
WMAP7 without a spinning dust component, whose inferred random magnetic field is largest (cf.
previous section).

Cosmic-Ray Electrons The density and spectrum of cosmic-ray electrons depends in two ways
on the Galactic magnetic field: Firstly, the GMF determines the diffusion of the electrons from their
sources through the Galaxy and, secondly, synchrotron losses at high electron energies is the main
cause of electron cooling. The JF12 fits used ncre from a two-dimensional GALPROP simulation
with a uniform isotropic diffusion coefficient within a cylindrical volume of 4 kpc height. Here
we tested the three variants of the cosmic-ray electron densities used in [16], which are updated
versions of the calculations described in [22] and [23]. Two of them (variation r and t) use a
vertical extent of the diffusion volume of 4 kpc, whereas for variation s the height of the diffusion
volume is 10 kpc. The inferred field strengths of the coherent GMF are remarkably robust under
these changes, partially being due to the flexibility in the fit to adjust the relative scale between the
RMs and the polarized intensity by changing the amount of striated fields, i.e. aligned anisotropic
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Figure 2: Backtracking of charged particles at different rigidities from a regular grid of initial directions (dots) through
different models of the coherent GMF. The resulting directions outside of the Galaxy are denoted by squares and the
letters correspond to the models listed in Table 1. The sky maps are in Galactic coordinates and the particle rigidities
indicated in corners of each panel.

random fields that contribute to the polarized intensity, but not to the rotation measures. Further
studies concerning the impact of cosmic-ray electrons will be shown in [13], in particular the effect
of using a more detailed three-dimensional source distribution of relativistic electrons.

4. Application to Charged Particle Astronomy

Taken together, the variations of model assumptions explained in the last section lead to an
ensemble of models for the Galactic magnetic field, each of which is compatible with the current
data on the rotation measures from extragalactic radio sources and the synchrotron emission in the
microwave band. This ensemble of models can be considered as a provisional estimation of the
uncertainty of our knowledge of the GMF, and used to propagate the uncertainty in our knowledge
of the GMF to any kind of calculation involving the magnetic field of the Galaxy, by repeating
the calculation for each of the models. The variations of the results give a lower limit on the
propagated uncertainty, in the absence of further input to select among or discard some of the GMF
model variations.

As an example we present here the uncertainties in the arrival direction of ultrahigh energy
cosmic rays, induced by uncertainties of the coherent component of the GMF. (See [24] for a
discussion concerning the impact random component of the GMF on deflections and [25] for a
comparison of deflections using two models of the coherent GMF.) For this purpose we performed
a backtracking of charged particles through each of the GMF models listed in Table 1. The results
are shown in Fig. 2 for particle rigidities R (rigidity = energy/charge) of 10, 20, 30 and 60 EV.
As can be seen, for very large rigidities (e.g. protons with energies of 6× 1019 eV), the overall
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amount of deflection and correspondingly also the model differences are small, confirming the
long-speculated possibility of charged particle astronomy with protons at ultrahigh energies. Even
for rigidities as low as 20 EV, the different deflections are mostly confined within well-defined
regions so it seems plausible that a correction for the spatially varying average deflection based on
all models, can still be used to enhance the capabilities to identify the sources of ultrahigh energy
cosmic rays. For still lower rigidities, e.g. 10 EV, the differences in the backtracked directions start
to diverge considerably, but even in this case, a more sophisticated analysis can reduce the current
uncertainties in studies of the source direction of ultrahigh energy cosmic ray nuclei. Further
progress on constraining the magnetic field is also expected.
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