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1. Introduction

The radiographic analyses with atmospheric muons are applied to the inner-structure investi-
gations of various objects, e.g. geophysical substances like volcanic mountains [1, 2], large-volume
rock structure like pyramids [3, 4], inaccessible cores of the damaged nuclear reactors [5], and oth-
ers. Precise evaluations of transmission efficiency for penetrating muons are important for these
radiographic methods. Many Monte Carlo simulations are performed to clarify the process [2, 5, 6].
We evaluate transmission efficiency analytically by solving the diffusion equation for penetrating
charged particles, taking account of radiation and ionization losses. The results are compared with
those derived by our simple Monte Carlo simulations.

2. The diffusion equation for energy dissipation of charged particles

Charged particles dissipate their energies by radiation and ionization when they traverse through
matters. The diffusion equation for the differential energy spectrumπ(E0,E, t) of charged particles
is described as

∂
∂ t

π(E0,E, t) = −
∫ 1

0

{
π(E0,E, t)−

1
1−v

π(E0,
E

1−v
, t)

}
φ(v)dv+ ε

∂
∂E

π(E0,E, t), (2.1)

wheret denotes the traversed thickness measured in radiation unit,φ(v)dv the probability of frac-
tional energy loss, andε the constant energy loss in unit radiation length [7]. If we express

π(E0,E, t)dE=
dE

(2π i)2

∫ ∫
ds
E

(
E0

E

)s

Γ(−q)
( ε

E

)q
M (s,q, t)dq (2.2)

by introducing M-function ofM (s,q, t) [8], the diffusion equation (2.1) is expressed as{
∂
∂ t

+A(s+q)

}
M (s,q, t) = (s+q)qM (s,q−1, t) with M (s,0,0) = 1, (2.3)

whereA(s) denotes the characteristic energy-dissipating function derived by

A(s)≡
∫ 1

0
{1− (1−v)s}φ(v)dv. (2.4)

We applyA(s) of electron indicated in Rossi and Greisen [7] in this report.

3. The survival probabilities under Approx. A

3.1 The results ordinarily derived by the saddle point method

The differential energy spectrumπ(E0,E, t) with ε = 0 (Approx. A) is derived as the residue
atq= 0 of Eq. (2.2), so that we have

M (s,0,0) = e−A(s)t and (3.1)

π(E0,E, t)dE =
dE
2π i

∫
ds
E

(
E0

E

)s

e−A(s)t . (3.2)
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Figure 1: Survival probabilities withε = 0 (Approx. A) versusE0/E at t = 1, 2, 3, 4, 5 (left panel) and
those versust with E0/E = 102, 103, 104, 105, 106 (right panel), derived by the ordinary transform (thin
lines), via complementary probabilities (thick lines), and by Monte Carlo simulations (dots).

Then the survival probabilityπ(E0,> E, t) of charged particles with their energies greater thanE
is obtained as

π(E0,> E, t)≡
∫ ∞

E
π(E0,E, t)dE=

1
2π i

∫
ds
s

(
E0

E

)s

e−A(s)t , (3.3)

where the path of integration is taken at0< R(s). We can evaluate the probability ordinarily by
the saddle point method,

π(E0,> E, t) ≃ (E0/E)s̄e−A(s̄)t/
√

2π{1− s̄2A′′(s̄)t}, with (3.4)

ln(E0/E) ≃ A′(s̄)t +1/s̄ and 0< s̄. (3.5)

The survival probabilities versusE0/E so obtained att = 1, 2, 3, 4, and 5 are indicated in the left
panel of Fig,1 (dot lines, from left to right). Also, those versust with E0/E = 102, 103, 104, 105,

and106 are indicated in the right panel of Fig,1 (dot lines, from left to right).

3.2 The results derived via the complementary probability

The ordinary results of the survival probability derived above by the saddle point method
show ill accuracy at the large-probability region [9], giving the limiting value ofe/

√
2π ≃ 1.08 to

π(E0,> E, t) at E0/E → ∞ in the left panel and att → 0 in the right panel of Fig,1, respectively.
To avoid this inaccuracy, we introduce the complementary probabilityπ∗(E0,> E, t) defined by

π∗(E0,> E, t)≡− 1
2π i

∫
ds
s

(
E0

E

)s

e−A(s)t , (3.6)

where we moved the path of integration to−1< R(s) < 0. The residue of 1 ats= 0 causes the
complementary relation of

π(E0,> E, t)+π∗(E0,> E, t) = 1, (3.7)
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so that the survival probability can also be evaluated by the saddle point method as

π(E0,> E, t) ≃ 1− (E0/E)s̄e−A(s̄)t/
√

2π{1− s̄2A′′(s̄)t}, with (3.8)

ln(E0/E) ≃ A′(s̄)t +1/s̄ and −1< s̄< 0. (3.9)

The results are indicated in the left and the right panels of Fig,1 (thick solid lines), which give the
exact limiting values of 1 atE0/E → ∞ and att → 0.

To examine accuracies of the result, we carried out a Monte Carlo simulation of cascade show-
ers [10] and investigated the survival probabilities of the incident electron (dots), and we have
confirmed that the ordinary results of survival probability and the results via the complementary
probability show good accuracies in the low- and the high-probability regions, respectively.

4. The survival probabilities under Approx. B

4.1 Solution of the survival probabilities

The diffusion equation (2.3), taking account of both radiation and ionization losses (Ap-
prox. B), can be expressed as

{λ +A(s+q)}L (s,q,λ ) = (s+q)qL (s,q−1,λ )+δq,0 (4.1)

by applying Laplace transform toM (s,q, t),

L (s,q,λ ) =
∫ ∞

0
e−λ tM (s,q, t)dt, (4.2)

according to Nishimura [8]. Then we have

L (s,q,λ ) =
Γ(s+q+1)Γ(q+1)

Γ(s+1)
1

λ +A(s)
lim

m→∞
{λ +A(s+m+1)}−q

m

∏
j=1

λ +A(s+q+ j)
λ +A(s+ j)

, (4.3)

thus the survival probabilityπ(E0,E > 0, t) of charged particles att is derived by integrating (2.2)
from E to infinity and taking the limiting value atE → 0, as

π(E0,E > 0, t) ≡ 1
2π i

∫ (
E0

ε

)s

Γ(s)M (s,−s, t)ds

=
1

(2π i)2

∫ ∫ (
E0

ε

)s

etλ Γ(s)L (s,−s,λ )dsdλ . (4.4)

4.2 The solution in case of largeE0/ε

The survival probabilityπ(E0,E > 0, t) expressed in (4.4) can be evaluated as

π(E0,E > 0, t) ≃ (E0/ε)s̄Γ(s̄)M (s̄,−s̄, t)/
√

2π(∂ 2/∂s2) ln{Γ(s̄)M (s̄,−s̄, t)}, with (4.5)

ln(E0/ε) + (∂/∂s) ln{Γ(s̄)M (s̄,−s̄, t)}= 0 and 0< s̄ (4.6)
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by applying the saddle point method ordinarily, whereΓ(s)M (s,−s, t) is expressed as

Γ(s)M (s,−s, t) =
∞

∑
k=0

Γ(s)Mk(s,−s)e−A(s+k)t with (4.7)

Γ(s)M0(s,−s) =−Γ(−s) lim
m→∞

{A(s+m+1)−A(s)}s
m

∏
j=1

A( j)−A(s)
A(s+ j)−A(s)

and (4.8)

Γ(s)Mk(s,−s) =−Γ(−s)
A(k)−A(s+k)
A(s)−A(s+k)

×

lim
m→∞

{A(s+m+1)−A(s+k)}s
m

∏
j=1, j ̸=k

A( j)−A(s+k)
A(s+ j)−A(s+k)

(4.9)

as indicated ever [8, 11]. Derivatives ofΓ(s)M (s,−s, t) are expressed as

∂
∂s

{Γ(s)M (s,−s, t)} =
∞

∑
k=0

[
∂
∂s

{Γ(s)Mk(s,−s)}−A′(s+k)t {Γ(s)Mk(s,−s)}
]

e−A(s+k)t , (4.10)

∂ 2

∂s2 {Γ(s)M (s,−s, t)} =
∞

∑
k=0

[
∂ 2

∂s2 {Γ(s)Mk(s,−s)}−2A′(s+k)t
∂
∂s

{Γ(s)Mk(s,−s)}+

{
A′(s+k)2t2−A′′(s+k)t

}
{Γ(s)Mk(s,−s)}

]
e−A(s+k)t . (4.11)

The survival probabilities versusE0/ε so obtained att = 1, 2, 3, 4, and 5 are indicated in the
right panel of Fig,2 (dot lines, from top to bottom). Summation (4.7) was taken up tok of 10.
Derivatives ofΓ(s)Mk(s,−s) are evaluated numerically. This method is valid at10≲ E0/ε , due
to the convergence. We compared the results with the survival probabilities of incident electron
certified in the Monte Carlo simulation. Both results agree well at the relatively low-probability
region.

Discrepancies at the high-probability region come from the inaccuracy of the saddle point
method in this region. We introduce the complementary probability of

π∗(E0,E > 0, t) ≡ − 1
2π i

∫ (
E0

ε

)s

Γ(s)M (s,−s, t)ds

≃ (E0/ε)s̄Γ(s̄)M (s̄,−s̄, t)/
√

2π(∂ 2/∂s2) ln{Γ(s̄)M (s̄,−s̄, t)}, with (4.12)

ln(E0/ε) + (∂/∂s) ln{Γ(s̄)M (s̄,−s̄, t)}= 0 and −1< s̄< 0, (4.13)

thenπ(E0,E > 0, t) obtained through the relation of (3.7) show good agreement with the Monte
Carlo results, as indicated in the figure. Note thatπ∗(E0,E > 0, t) defined here can be applied to
obtain the probability for smallerE0/ε regions (up to2≲ E0/ε), as indicated in the left panel of
the figure.

Also, the survival probabilities versust with E0/ε = 10, 102, 103, 104, 105, and106 are indi-
cated in the right panel of Fig,3 (dot lines, from left to right). In this case, it requires much iteration
works to finds̄ or t corresponding toE0/ε in Eq. (4.6). Fortunately, we can well approximate the
summation (4.7) by the first term (k= 0). Then we can effectively determinet by

A′(s̄)t = ln(E0/ε)+(∂/∂s) ln{Γ(s̄)M0(s̄,−s̄)} . (4.14)
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Figure 2: Survival probabilities (Approx. B) versusE0/ε at t = 0.2, 0.4, 0.6, 0.8, 1, 2, 3 (left panel) and
those att = 1, 2, 3, 4, 5 (right panel), derived by the ordinary transform (thin dot lines), via complementary
probabilities (thick lines), via the extended complementary probabilities from largeE0/ε region (thin lines
in the left panel), and by Monte Carlo simulations (dots).

This method is valid at10≲ E0/ε , due to the convergence. The results also agree well with the
Monte Carlo results (dots) at the relatively low-probability region. At the high-probability region,
we obtain the survival probabilities via the complementary probability of (4.12) with (4.14) and
−1< s̄< 0. The results agree well with the Monte Carlo results (dots), as indicated in the figure.

4.3 The solution in case of smallE0/ε

In case ofE0/ε ≪ 1, π(E0,E > 0, t) indicated in the last subsection diverges, so that we
evaluate the survival probability of (4.4) as

π(E0,E > 0, t) =
1

2π i

∫
etλ Σ(E0/ε,λ )dλ

≃ etλ̄ Σ(E0/ε, λ̄ )/
√

2π(∂ 2/∂λ 2){lnΣ(E0/ε, λ̄ )}, with (4.15)

t ≃ −(∂/∂λ ){lnΣ(E0/ε , λ̄ )} and −∞ < λ̄ < ∞, (4.16)

where we introduceΣ(E0/ε,λ ) as

Σ(E0/ε ,λ ) =
1

2π i

∫ (
E0

ε

)s

Γ(s)L (s,−s,λ )ds

= − 1
2π i

∫
ds

(
E0

ε

)s Γ(−s)
λ +A(s)

lim
m→∞

{λ +A(s+m+1)}s
m

∏
j=1

λ +A( j)
λ +A(s+ j)

, (4.17)

with the path of integration taken at0 < R(s) < 1. As Γ(−s) gives the residue of−(−1)k/k! at
s= k, we have

Σ(E0/ε ,λ ) = −
∞

∑
k=1

1
k!

(
−E0

ε

)k 1
λ +A(k)

lim
m→∞

{λ +A(k+m+1)}k
m

∏
j=1

λ +A( j)
λ +A(k+ j)

= −
∞

∑
k=1

1
k!

(
−E0

ε

)k 1
λ +A(k)

k

∏
j=1

(λ +A( j)). (4.18)
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Note that the denominator ofλ +A(k) is cancelled by the last factor in the product, in this formula.
And the derivatives ofΣ(E0/ε ,λ ) are expressed as

∂
∂λ

Σ(E0/ε ,λ ) = −
∞

∑
k=2

1
k!

(
−E0

ε

)k k−1

∏
j=1

(λ +A( j))
k−1

∑
j=1

1
λ +A( j)

, (4.19)

∂ 2

∂λ 2 Σ(E0/ε ,λ ) = −
∞

∑
k=3

2
k!

(
−E0

ε

)k k−1

∏
j=1

(λ +A( j))
k−2

∑
j=1

1
λ +A( j)

k−1

∑
m= j+1

1
λ +A(m)

. (4.20)

The survival probabilities versusE0/ε so obtained att = 0.2, 0.4, 0.6, 0.8, 1, 2, and 3 are
indicated in the left panel of Fig,2 (dot lines, from left to right). This method is valid atE0/ε ≲ 10.
The results agree well with the Monte Carlo results (dots) at the relatively low-probability region.

At the high-probability region, we introduce the complementary probability

π∗(E0,E > 0, t) ≡ 1
2π i

∫
etλ Σ∗(E0/ε,λ )dλ

≃ etλ̄ Σ∗(E0/ε, λ̄ )/
√

2π(∂ 2/∂λ 2){lnΣ∗(E0/ε , λ̄ )}, with (4.21)

t ≃ −(∂/∂λ ){lnΣ∗(E0/ε, λ̄ )} and 0< λ̄ , (4.22)

where

Σ∗(E0/ε,λ ) ≡ − 1
2π i

∫ (
E0

ε

)s

Γ(s)L (s,−s,λ )ds= 1/λ −Σ(E0/ε ,λ ). (4.23)

Note that the residue of1/λ at s= 0 was taken into account as the path of integration was moved
to R(s)< 0. And we have

(∂/∂λ )Σ∗(E0/ε,λ ) = −1/λ 2− (∂/∂λ )Σ(E0/ε,λ ), (4.24)

(∂ 2/∂λ 2)Σ∗(E0/ε,λ ) = 2/λ 3− (∂ 2/∂λ 2)Σ(E0/ε,λ ). (4.25)

The survival probability obtained here fromπ∗(E0,E > 0, t) through the relation of (3.7) well
interpolate that from (4.12) and that of (4.15) and explain the Monte Carlo results (dots) at the
high-probability region, as indicated in the figure (thick solid lines).

Also, the survival probabilities versust with E0/ε = 0.1 0.2, 0.5, 1.0, and2.0 are indicated
in the left panel of Fig,3 (dot lines, from left to right). The results also agree well with the Monte
Carlo results (dots) at the relatively low-probability region, on the contrary the complementary
probability (4.21) with (4.22) defined above well explains the Monte Carlo results through the
relation of (3.7), as indicated in the figure (thick solid lines). This method is valid atE0/ε ≲ 2. Note
that the curves in the left panel with2< E0/ε < 10can be derived by applying the complementary
probability (4.12) defined in the preceding subsection.

5. Conclusions and discussions

Transmission efficiencies of charged particle traversing through matter are investigated ana-
lytically, by solving the diffusion equation taking account of radiation and ionization losses. The
solutions corresponding to high and low incident energies are proposed respectively, due to the

7
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Figure 3: Survival probabilities (Approx. B) versust with E0/ε = 0.1 0.2, 0.5, 1.0, 2.0 (left panel) and
those withE0/ε = 10, 102, 103, 104, 105, 106 (right panel), derived by the ordinary transform (thin lines),
via complementary probabilities (thick lines), and by Monte Carlo simulations (dots).

difference of convergence condition. Well-known inaccuracies of the saddle point method appear-
ing at the high-probability regions are removed by the derivation introducing the complementary
probability. Highly accurate results of the transmission efficiency acquired without fluctuations
will improve the resolution of radiographic analyses.
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