Main Image
Volume 301 - 35th International Cosmic Ray Conference (ICRC2017) - Session Gamma-Ray Astronomy. GA-extra-galactic
FACT - Time-Resolved Blazar SEDs
D. Dorner* FACT Collaboration
*corresponding author
Full text: pdf
Pre-published on: 2017-08-16 15:26:07
Published on:
Abstract
Blazars are highly variable objects and their spectral energy distribution (SED) features two peaks. The emission at low energies is understood, however, the origin of the emission at TeV energies is strongly debated. While snapshots of SEDs usually can be explained with simple models, the evolution of SEDs challenges many models and allows for conclusions on the emission mechanisms. Leptonic models expect a correlation between the two peaks, while hadronic models can accommodate more complex correlations.

To study time-resolved SEDs, we set up a target-of-opportunity program triggering high-resolution X-ray observations based on the monitoring at TeV energies by the First G-APD Cherenkov Telescope (FACT). To search for time lags and identify orphan flares, this is accompanied by X-ray monitoring with the Swift satellite. These observations provide an excellent multi-wavelength (MWL) data sample showing the temporal behaviour of the blazar emission along the electromagnetic spectrum.

To constrain the origin of the TeV emission, we extract the temporal evolution of the low energy peak from Swift data and calculate the expected flux at TeV energies using a theoretical model. Comparing this to the flux measured by FACT, we want to conclude on the underlying physics.

Results from more than five years of monitoring will be discussed.
Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.