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1. Introduction

The DArk Matter Particle Explorer (DAMPE) is a space-borne high-energy particle detector
that measures cosmic rays and gamma-rays in a very wide energy range [1, 2] for the study of
high energy astrophysics as well as the nature of dark matter particles [3, 4, 5]. As illustrated in
Fig. 1, DAMPE is composed of four sub-detectors. The Plastic Scintillation Detector (PSD) acts as
anti-coincidence detector (ACD) for gamma-ray identification and a charge detector for the cosmic
rays. The Silicon-Tungsten Tracker (STK) accurately measures the track of incident particle. The
BGO calorimeter (BGO) measures the energy of the incident particle and provides electron/proton
(e/p) separation ability. The Neutron Detector (NUD) provides further e/p separation power [1, 2].

Figure 1: Side view of the DAMPE detector [2].

Gamma-ray observation with high energy, angular, and time resolution is not only helpful
for the high energy astrophysics but also for the dark matter indirect detection. A sophisticated
photon identification algorithm has been developed for DAMPE to produce a GeV gamma-ray
sky map using 17 months of data. In the following of this article, we first introduce the photon
identification algorithm in principle. The validity of the gamma-ray sample, as well as its potential
scientific application, is then demonstrated in bright source identification/analysis, transient source
monitoring, and boresight alignment.

2. Gamma-ray selection in DAMPE

We shown in Fig. 2 the typical detection of a photon (left panel) and a proton (right panel).
The PSD on top of DAMPE is used as ACD for gamma-ray identification as the energy deposition
of an incident particle in PSD is proportional to the square of the particle charge. An accurate track
reconstructed using the STK measurements is then used to determine the PSD bar(s) penetrated
by the incident particle and the corresponding path-length. Considering the uncertainties in the
measurements of both PSD and STK and the effect of backsplash(s), the PSD is able to provide
a rejection power of ∼ 105 for charged particles. A first step e/p discrimination with a separation
power of > 102 is also adapted to enhance the proton suppression. More details about the gamma
selection method for DAMPE could be found in [6]. We show in Fig. 3 the acceptance and
flux obtained form simulation for photons and electrons, showing that the electron background is
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suppressed to a reasonably level. The same estimation for cosmic protons is not available yet due
to limited simulated data, but we are also confident about the proton background given a combined
proton rejection power of >107.

Figure 2: Detection of a typical photon (left) and a proton (right) event. Without igniting the PSD on top of
DAMPE, a photon is convert into an electron-positron pair at one of the three tungsten foils equipped in the
STK to leave trajectory points in the following STK panels, and then shower electromagnetically in BGO.
An incident photon of unit charge ignites the PSD and produce a hardronic shower in BGO after leaving a
set of track points in STK.
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Figure 3: The DAMPE acceptance (left panel) and rate (right panel) of photons and electrons. See [6] for
details.

The DAMPE performance in gamma-ray observation is carefully evaluated using simulation
data [7]. And a brief summary is given in Tab. 1.

Parameter Name Value
Energy Range 5GeV-10TeV

Energy resolution at normal incidence ∼1% @ 100GeV
Angular resolution at normal incidence 0.1◦ @ 100GeV

Effective area at normal incidence ∼1200 cm2 @ 100GeV
Field of View (FoV) ∼ 1 sr

Table 1: Summary of DAMPE expected performance for gamma-ray detection. See [7] for details.
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3. Bright gamma-ray sources

Based on the 1.5-year DAMPE observation, we shown in Fig. 4 the GeV gamma-ray sky
map without exposure correction. Dozens of sources are clearly identified in the map, including
PSR, AGN, SNR etc. A preliminary analysis of some selected bright sources are given in [8]. For
example, the spectra and light curves 1 of the three brightest sources, namely, Vela, Geminga, and
Crab are shown in Fig. 5 and 6, respectively.

Figure 4: Sources identified in the gamma-ray sky map. See [8] for details.

Figure 5: The SED of three bright DAMPE point sources, Vela, Geminga, and Crab. The flux upper limits
are calculated if the TS values are smaller than 4. The dashed lines represent the best fitted power law
spectrum in the global analysis. See [8] for details.

Using our gamma-ray observation of the famous pulsar Geminga of very good time resolution
(up to milisecond), we are able to stack the photons within 3◦ of the source to produce the phase

1A preliminary ephemeris initially from the Fermi-LAT γ-ray data [?] and further optimized using the Fermi-LAT
data observed from 2016-01-01 to 2017-06-01 is used to calculate the light curve.
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Figure 6: Aperture photometric light curves of Vela, Geminga, and Crab. The time bin size is 30 days. The
horizontal dashed line indicates the average flux obtained in global likelihood analysis. The shaded range
represents the time bin in which the target source is not within the field of view of DAMPE. See [8] for
details.

diagram of the pulsar (red histogram in Fig. 7). A good consistency is seen in comparing our result
to that based on the observation of Fermi-LAT (blue histogram in Fig. 7).
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Figure 7: Left panel: 10◦×10◦ counts map for all photons above 1 GeV around the Geminga pulsar. The
position of the pulsar is indicated by the blue cross. Right panel: The light curve of these photons within 3◦

ROI.

4. Transient source monitoring

Operating in a solar synchronous orbit with a fairly large field of view, DAMPE monitors
more than half of the sky in every revolution of 95 minutes, and covers the entire sky twice an-
nually. Hence the continuous DAMPE gamma-ray observation is suitable for Transient source
identification and monitoring. As shown in Fig. 8, a flare is clearly seen in the light curve of CTA
102 based on the first year DAMPE observation.

5. Boresight alignment

The direction of each detected particle is reconstructed with respect to the reference system of
DAMPE payload. To achieve the celestial coordinate of a particle, the transformation from payload
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Figure 8: Light curves for the direction of CTA 102 (left panel) and 3C454.3 (right panel). Red squares are
the observed flux, and the blue line represents the expected ones assuming steady emission of the source.
See [10] for details.

coordinate system to celestial coordinate system is required. The transformation is determined by
orbital parameters and the celestial orientation of the satellite which are provided by the Navigation
system and star-tracker respectively. Small deviations from real pointing may be introduced to the
transformed celestial coordinate, due to thermal variations, acoustic vibrations, 0g fluctuations, and
uncertainty in the orbital parameters and star-tracker pointing. This miss match will not only cause
a systematic shift between the mean observed position and the real position of a point source, but
also lead to a distorted point spread function (PSF) profile. In this section, we use the gamma-ray
data centered around several bright point sources to measure and correct the angular deviation from
the real celestial coordinate, called “boresight alignment” of DAMPE payload.

For this purpose, we use three of the brightest sources, namely, Vela, Geminga, and Crab in
the gamma-ray sky, and select photons within 4◦ of the real position of the sources and restrict the
energy between 3 GeV and 100 GeV. The gamma-rays in a region of interest (ROI) can be modeled
by a point source and a background template. The spectral and spatial parameters of the point
source is import from the third Fermi-LAT catalog of high-energy sources [11]. The background is
modeled by an isotropic template with a power-law spectrum.

As summarized in table 1, we see a reasonably good consistency between the results of the
boresight alignment using the three different sources.

Source Name Photon Number θX (degree) θY (degree) θZ(degree)
Vela 1438 0.13±0.01 0.02±0.01 -0.14±0.02

Geminga 446 0.13±0.02 -0.02±0.02 -0.14±0.02
Crab 265 0.11±0.02 -0.03±0.03 -0.15±0.03

Table 2: Boresight alignment results estimated using three brightest gamma-ray sources.

6. Summary

DAMPE has been operating smoothly on-orbit for more than one year and a half and more
than 2.8 billion cosmic ray and gamma-ray events covering a very wide energy range have been
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recorded. Based on the data and a sophisticated photon identification algorithm, we are able to pro-
duce a gamma-ray sky map of more than 90000 photons with low contamination level. We discuss
the potential implementation of DAMPE’s photon observation in both calibration and science, in-
cluding identification/analysis of a number of brightest sources, transient sources monitoring, and
boresight alignment. Independent researches related to the DAMPE gamma-ray detection are also
carried and will be posted elsewhere, including the gamma-ray selection method[12], simulation on
gamma-ray detection [13], and analysis of a few bright pulsars based on independent gamma-ray
selection method[14].
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