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The composite supernova remnant (SNR) MSH 15-52 comprises the bright X-ray pulsar wind
nebula (PWN) of PSR B1509-58, surrounded by a shell which is a prominent object in the radio
domain. H.E.S.S. had discovered extended very-high-energy (VHE) gamma-ray emission coin-
cident with the PWN. With additional H.E.S.S. observations performed since the 2005 discovery
paper, we study the properties of the emission in greater detail. We compare the VHE gamma-
ray morphology of the PWN with that in synchrotron emission, obtained from archival X-ray
observations, and discuss the implications on the magnetic field in the nebula. In particular, we
discuss potential extended gamma-ray emission beyond the X-ray PWN, which may allow for
conclusions on scenarios of PWNe as sources of cosmic ray electrons and positrons.
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1. Introduction

Pulsar Wind Nebulae (PWNe) are magnetized clouds of relativistic particles thought to be
accelerated by a pulsar, that may be found in the inner regions of a supernova remnant (SNR). The
composite SNR MSH 15-52 and the central compact object that has been identified as the pulsar
PSR B1509-58 have been observed in X-rays and also in radio wavelengths. In 2005, VHE γ-ray
emission was discovered by the High Energy Stereoscopic System (H.E.S.S.), using 22.1h of data,
and the emission morphology was described as an elliptical Gaussian[1].

In this proceeding, we use a larger dataset of H.E.S.S. observations, from 2004 until 2014,
consisting of the H.E.S.S. phase I era where events are reconstructed from an array of four 12-m
sized Cherenkov telescopes. We have more than twice the statistics of the discovery paper, in order
to disentangle the morphology of MSH 15-52. Furthermore, we use X-ray Chandra observations so
as to compare the VHE emission produced via Inverse Compton in γ-rays with the corresponding
synchrotron emission of the PWN. We show that in order to model well the emission, one needs to
modify the model using the X-ray template, linked to the assumptions one makes on the magnetic
field. Moreover we show that an additional geometrical component is required in order to describe
the extended γ-ray emission beyond the outskirts of the X-ray PWN. Finally we hypothesize, given
its shape, on the behaviour of the leptonic population within this object.

2. Morphological analysis

2.1 Gamma-ray emission

In order to analyse the morphology of the composite MSH 15-52, we use γ-ray count maps ex-
tracted with the ParisAnalysis analysis chain1 using a Model ++ standard reconstruction of events.
The radius of selection on the given runs was set at 2.5◦ and standard cuts were chosen (≥ 60 p.e.,
corresponding to & 0.3 TeV) resulting in H.E.S.S. I data with a live time of 95.9 hours (48.5 h
exposure-corrected). The results were cross-checked by performing a similar image analysis on
maps obtained by an independent calibration and reconstruction chain.

The fitting procedure was made with the Sherpa package[2], using the raw count map of
gamma-like events, the Point Spread Function image (PSF), a smoothed background and an in-
tegrated exposure map assuming a spectral index Γ = 2.27[1].

2.2 X-ray emission

2.2.1 Emission from leptons in PWNe

In PWNe, the more common mechanism of emission up to the TeV range would be Inverse
Compton (IC) scattering of seed photons by leptons. The seed photon population may be mainly
composed by the Cosmic Microwave Background (CMB), the Galactic Far Infra-Red background
(FIR) and the Galactic stellar background may also contribute. As we are interested in the lepton
distribution in the source, we examine to what extent the leptons responsible for γ-ray IC emission
correspond in energy range to those which produce synchrotron radiation in the X-ray range. One-
zone model fits of the synchrotron and IC emission suggest a magnetic field value B≈ 17 µG[1, 3]

1using the HESS-Soft-0-8-24 version, Prod26 DSTs
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Radio band (843 MHz) Synchrotron X-ray template (4 - 7 keV)

γ-ray band (≥ 0.3 TeV)

Contours in the radio, X-ray and γ-ray bands

Figure 1: Maps in different wavelengths for the composite SNR MSH 15-52. Top left : radio band. Image
extracted from the Molonglo Galactic Plane Survey (MGPS) using the Molonglo Observatory Synthesis
Telescope (MOST) at 843 MHz with a resolution of 43′′× 43′′ cosec |dec|. The green contours outline
parts of the shell of the SNR MSH 15-52. Top right : X-ray template extracted from four Chandra archival
observations (∼ 200 ks) in the 4 to 7 keV band. The red contours are shown as a tracer of the PWN size.
Bottom left : γ-ray emission from ∼0.3 TeV and above detected by H.E.S.S.-I. The cyan contours outline
the peaked central VHE emission and the more extended one. Bottom right : The black cross indicates the
position of the pulsar PSR B1509-58. The cyan contours are drawn for the γ-ray emission, the red contours
for the X-ray emission and the green ones for the radio emission. The orange circle represents the extent of
the symmetrical added Gaussian component found in this analysis for the model v1R+G. (see Sect. 3.1.3)

in the PWN; electrons whose synchrotron spectrum peaks at hνsynch > 4 keV then have energies
Ee & 100 TeV. The same models of the γ-ray IC emission suggest that the Galactic FIR background
is the dominant target photon component[1, 3]. Thus for a blackbody temperature of ∼ 45 K, γ-
rays with Eγ & 0.3 TeV are predominantly scattered by leptons with Ee & 2 TeV. While the γ-ray
morphology thus traces leptons of slightly lower energy than the X-ray synchrotron map, it is
plausible to assume that they follow the same distribution given the compatible spectral indices[4].

2.2.2 X-ray template

For the morphological fitting of MSH 15-52, we use four archival X-ray Chandra observations
resulting in a total of ∼ 200 ks. We choose the energy range 4–7 keV, in order to omit as much
as possible the thermal emission at lower energy from the SNR, and in particular from the Hα
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nebula RCW 89 in the NW part of the image (see Fig.1). Spectroscopic imaging suggests that the
thermally-emitting clumps in RCW 89, which may be due to the encounter of the pulsar jet with
the SNR shell boundary, show no detectable emission above ∼ 4 keV[4].

As a template for the synchrotron map in the morphological fit, we used a modified version of
the exposure-corrected X-ray map. An average estimate of the background, based on four regions
in the image, was subtracted from the template, and the emission coming from the pulsar has been
replaced by an average of its immediate surroundings. Furthermore, a mask has been applied in
order to keep only the significant X-ray emission from the PWN and to prevent noise at the outskirts
of the image from influencing the fit.

3. Results

3.1 Fitting models

For the fitting procedure, the different models consisted of first fixing the background, then
convolving the X-ray template (and the additional components) with the PSF and multiplying the
result by the exposure map. The influence of the PSF has been explored by testing our procedure
using a PSF broadened with a standard deviation of σ = 0.022◦, which is representative of the PSF
uncertainty based on a systematic study.

3.1.1 Model v1 : X-ray template

When using only the X-ray template for fitting the shape of the gamma candidates count
map, the "v1" model, the results indicate that the central region around the pulsar is dominating
the fit procedure, even though the emission coming from the pulsar itself had been previously
removed in the image analysis. This can be clearly seen in the residual map, where there is an
apparent correlation between the position of the pulsar and the striking negative residuals (see
Fig. 2, left column). Thus the actual longitudinal profile of MSH 15-52 is not fully reproduced, as
in addition to the plunging negative residuals mentioned above, there are also positive residuals at
larger distances from the central emission.

3.1.2 Model v1R : X-ray template × Rα

The previous model (Sect. 3.1.1) has shown that the X-ray emission coming from the region
around the pulsar is still too bright when compared to our γ-ray data. Therefore, by assuming that
the magnetic field B varies spatially, we imposed a dependency of B with the projected distance
R to the pulsar position, by multiplying the X-ray template by Rα where α is a given index to
be determined by the fit results. Let us call this model "v1R". This parameter α , should hint at
the actual dependency of B with the distance R. Thus based on this magnetic field component
approximation, the Inverse Compton flux FIC is approximated to the synchrotron flux Fsync times
the distance R to a given power α : FIC ∝ Fsynch × Rα . As for the mentioned fluxes, Fsync is
proportional to the lepton density Ne and to the magnetic field B with a given index β : Fsynch(ν) ∝

Bβ × Ne. In turn, B is dependent to the distance with another given index δ : B ∝ Rδ . On the other
hand, FIC is proportional to Ne and the photon density Uφ which is assumed to be uniform. With
these different approximations in hand, one may easily find that FIC

Fsynch
∝ R−βδ ∝ Rα thus giving the

following simple relation between those indices : δ = - α

β
.

4



P
o
S
(
I
C
R
C
2
0
1
7
)
6
8
1

Study of the VHE emission of the PWN in MSH 15-52 M. Tsirou

v1 : X-ray template v1R : X-ray template × Rα v1R+G : X-ray template × Rα + Gsym

Figure 2: Preliminary maps of the models (top) and the residuals (bottom) for the different morphological
fits of the composite SNR MSH 15-52. From left to right : v1 model, v1R model, v1R+G model (see
Sect. 3.1). On the images, the label consists of the α parameter. The green cross represents the position
of the pulsar PSR B1509-58. The black circle for the v1R+G model represents the one-σ extent of the
symmetrical Gaussian component (see Sect. 3.1.3).

The distribution of the leptonic population can be described as a power law such as N(E)dE ∝

κ E−pdE. The dependency of the flux with the frequency ν and the magnetic field is then such as
Fν ∝ ν

1
2 (1−p)B

1
2 (1+p). Thus we can link the previously mentioned index β with p the electron index

and s the synchrotron index such as β = 1
2(1+ p) = s+1. Thanks to this relation, when using our

fitted estimations of the α index ∈ [1.0 , 1.3] then for a spectral index of β ≈ 2.2, one finds that the
dependency between the magnetic field and the distance is B ∝ Rδ with δ ∈ [- 0.4 , -0.6].

3.1.3 Model v1R+G : X-ray template × Rα + Gaussian component

As seen in Fig. 2 (middle column), the positive residuals between the v1R model and the
dataset indicate strongly that one needs to take into account another component in the model,
hinting that it should be located around the southern part of the PWN in MSH 15-52. Therefore,
we added a geometrical component to our previous model : a symmetrical Gaussian component.
We also explored the possibility to add other types of components such as a shell or a disk. The
results of the fitting procedures indicate that the Gaussian component better suits our data. This
model will be mentioned as the "v1R+G" model for the rest of the discussion.

3.2 Statistical comparison

In order to efficiently compare all of our models (nested or not), we use the Akaike Information
Criterion (AIC)[5]. It is a statistical tool comprising a likelihood function, also considering the
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Model v1 : v1R : v1R+G :
X-ray template X-ray template × Rα X-ray template × Rα + component

α parameter 0.00 1.26 ± 0.06stat 1.31 ± 0.14stat

AIC 255 074 255 474 256 466
∆AIC 0 400 1 392
X-ray amplitude (a.u.) (1.5 ± 0.03stat) 105 (1.7 ± 0.03stat) 105 (0.8 ± 0.05stat) 105

Added component no no yes : symmetrical Gaussian
Portion of the total flux 64.8 % ± 5.3stat%
RA 15 h 14 m 18.0 s ± 2.1stat s ± 2.6syst s
Dec −59 ◦ 10 ′ 59 ′′ ± 16 ′′stat±20 ′′syst

Extent σ = 6.89 ′±0.20 ′stat±0.45 ′syst

Table 1: Preliminary results for the different fit models of the analysis with standard cuts after selecting the
runs within 2.5◦. The ∆AIC is computed by comparison to the v1 model (only using the X-ray template).
The portion of the total flux is computed as the fraction of the Gaussian integral over the total model flux.

number k of independently adjusted parameters in the given model thus enabling the comparison
between models with different number of parameters : AIC =−2log(L)+2k. Here the difference
between the criteria ∆AIC = AICmodel1 - AICmodel2 is used for determining the best model.

Our results (Table 1) indicate, based on the statistical test value, the residual maps and the
stability of the convergence of the fit procedure, that the favored model for adequately describing
the distribution of the VHE gamma ray emission coming from the composite SNR MSH 15-52 is
the one using the X-ray template alongside with the α parameter illustrating the magnetic field -
distance dependency of the synchrotron emission and with an added geometrical component, being
a symmetrical Gaussian (model "v1R+G"). The intrinsic radius of this Gaussian component, which
comprises about 65% of the total flux, is∼ 7′, implying that the γ-ray emission extends farther than
the PWN observed in X-rays. In the following section we discuss possible interpretations of this
component by introducing some scenarios concerning the behavior of the leptons.

4. Discussion on the models

4.1 Composite SNR size and age

The characteristic spin-down time of PSR B1509–58 is τ ≈ 1600 yr[6], which sets an upper
limit to the pulsar age, unless it had an unconventional spin-down history. From HI absorption
measurements, Gaensler et al.[7] conclude that the distance to the SNR lies in the range 3.8kpc <
D < 6.6kpc, while the dispersion measure of the pulsar suggests a distance D ≈ 4.4 kpc with the
most recent Galactic free electron density model[6]. In the following, we will normalize D to a
fiducial distance of 4 kpc: d4 ≡ D/(4kpc).

The lack of measured pulsar proper motion suggests that the explosion center was near the
current position of PSR B1509–58. The SNR blast wave must then have expanded asymmetrically,
with a large radius of R = (20± 2)d4 pc being reached to the SE[7]. To reconcile this large size
with the relatively young age implied by the τ of the pulsar, one must assume a fairly energetic
explosion and a low medium density on the SE side. Gaensler et al.[7] suggest that the progenitor

6
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of this SNR was a helium star, combining an ejecta mass Mej ≈ 1.5M� and an explosion energy
E ∼ 3×1051 erg, and that the circumstellar medium density to the SE is nH ∼ 0.01cm−3.

4.2 Reverse shock interaction and offset relic PWN

The assumed low density to the SE would imply that the blast wave is still in the early part of
the transition from the free expansion to the Sedov-Taylor phase, and thus that the reverse shock on
that side has only traveled a small fraction of the distance back to the center. On the NW side of the
remnant, by contrast, the much smaller forward shock radius can be explained by interaction with a
much denser medium, for which a density nH ∼ 1–5cm−3 can be estimated[7]. On the NW side, the
SNR would then be well into the Sedov-Taylor phase, with the reverse shock having reached the
center and interacted with the PWN. Blondin et al.[8] have shown that the evolution of a composite
SNR in such an asymmetric medium results in the reverse shock compressing and displacing the
PWN in the direction opposite the high density region, yielding an offset, "relic" PWN comprising
the particles injected by the pulsar prior to the reverse shock interaction. This offset has been also
observed in other "middle-aged" PWNe[9] thus raising the possibility that the additional Gaussian
component in γ-rays which we find to the SE of the pulsar might originate from such a relic PWN.

4.3 Spectral break and cutoff

As discussed in Sect. 2.2.1, the leptons responsible for the γ-ray emission are of somewhat
lower energy than those traced by our synchrotron X-ray template. With an assumed magnetic
field value of 20 µG, the latter have Ee & 100 TeV and radiative synchrotron lifetimes . 300 yr,
considerably less than the age of the SNR, and thus the X-ray morphology reflects recently-injected
electrons. The lack of a prominent extended Gaussian component in X-rays could then be due to the
relic nebula having a synchrotron cooling cutoff at lower energies. Such a steeper spectrum for the
Gaussian component could be confirmed by energy-dependent morphology in the H.E.S.S. energy
range; we note that the morphology observed with Fermi-LAT[3] is compatible with our fitted
Gaussian component. An alternate possibility is that the electrons responsible for the Gaussian
component have a similar spectrum to the rest, but do not radiate significant synchrotron X-rays
because they are in a lower magnetic field medium, such as the SN ejecta.

4.4 Leptons escaping into ejecta

The morphology of the PWN in the X-ray band (Fig. 1) appears somewhat irregular. The
nebula follows the rotation axis of the pulsar, however there is a strong asymmetry between the
NW and SE regions, alongside the jets of the pulsar. If the halo and the other component share
the same spectral behaviour, then one could have an estimation of the magnetic field. The fact that
the synchrotron radiation does not match the extent of the γ-ray emission points to a relatively low
magnetic field medium surrounding the PWN, such as the SN ejecta. In order to fully study this
hypothesis, we would need to take into account the somewhat complex geometry of the system
resulting by the reverse shock interacting with the ejecta. This also implies a strongly diffusive
medium, with an energy-dependent diffusion coefficent κ at ∼ 1028 cm2s−1, meaning that the
leptons would be escaping their confinement propagating into the ejecta. This scenario needs to
be further explored by conducting an energy-dependent analysis of the morphology for this source,
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estimating upper limits for the magnetic field amplitude and understanding the degree of turbulence
of this system.

5. Conclusion

In this proceeding we have discussed the morphology of the composite SNR MSH 15-52 in
the VHE band using H.E.S.S. I data (Sect. 2.1). We also used a synchrotron X-ray template in the
[4 - 7] keV band in order to track the emission in γ-rays via IC scattering (Sect. 2.2). We have
found that our best model for adequately fitting the shape of the source, is the model "v1R+G" (see
Sect. 3.1.3 and Table 1), in which the X-ray emission is linked to the assumption on the magnetic
field depending on the projected distance as something similar to B ∝ R−

1
2 and the more extended

γ-ray emission is modelled by an added Gaussian of σ ∼ 7′, bearing 65% of the total flux.
Furthermore we present some scenarios regarding the behaviour on the leptonic population

of the system, based on the characteristic age, size and shape of the SNR MSH 15-52 and the
pulsar PSR B1509-58 within. We discuss the extent of the interaction of the reverse shock with
the medium based on its density gradients (Sect. 4.2), the spectra for the different components of
the source (Sect. 4.3) and the possibility of having an energy-dependent morphology for this object
when combined to an estimation for the magnetic field in the medium could support the hypothesis
of leptons escaping onto the SN ejecta (Sect. 4.4).

To conclude, MSH 15-52 has a quite telling morphology that combined with the spectral in-
formation may provide ground for a modelling of the leptonic population within the SNR and the
included PWN. A full modelling of the accelerated particles with assumptions on the ambient pho-
ton density, the magnetic field behaviour and the interaction of the reverse shock with the ejecta
could provide in the near future an improved understanding of this system.
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