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Nearby electron/positron accelerators, mostly Pulsar Wind Nebulae (PWNe), have been pro-
posed as potential origins of the positron excess above 10 GeV. The HAWC Observatory reveals
two very extended sources spatially coincident with two nearby middle-aged pulsars: Geminga
and PSR B0656+14, suggesting ultra-relativistic electrons/positrons accelerated in our backyard.
Morphological studies on these two PWNe provide a constraint on the diffusion coefficient at
HAWC energies. In this poster, we will present the model development and morphological stud-
ies on these PWNe, and the derived diffusion coefficient that best fits the data.
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1. Introduction

Launched into orbit in 2006, the PAMELA detector discovered an excess in the positron frac-
tion at energies above 10 GeV as compared to theoretical models of positron production [1]. This
anomalous observation has been confirmed with high precision by Fermi Large Area Telescope
(Fermi-LAT) [2] and Alpha Magnetic Spectrometer (AMS) [3]. It was proposed that this over-
abundance of positrons could be a consequence of the annihilation or decay of dark matter, but an
alternative explanation is that the positron excess is due to nearby electron/positron accelerators.
Pulsar wind nebulae (PWNe), known as efficient electron/positron accelerators, were postulated as
sources of the positron excess [4][5]. At 250 pc and 288 pc, Geminga (PSR J0633+1746) and PSR
B0656+14 are two of the nearest pulsars to earth, and this proximity combined with their relatively
advanced age make them important candidates contributing to the locally measured electron and
positron flux.

Ultra-relativistic electrons and positrons cool down via inverse Compton scattering (ICS) and
synchrotron. TeV gamma ray can be produced through IC scattering off lower energy photons,
e.g. cosmic microwave background . The extended TeV PWN with a size of 2.8◦± 0.8◦ around
Geminga was reported by the Milagro experiment [6]. Weak evidence (2.2σ ) of this large nebula
emission was reported by the Tibet air shower array [7], but IACT observations using standard
analysis techniques have only provided upper limits. In Fermi-LAT data, the Geminga pulsar is
one of the brightest sources in the GeV sky but there is no unambiguous evidence of the existence
of a surrounding nebula at GeV energies.

In this contribution, we will demonstrate the method of morphological analysis on the extended
TeV emission around Geminga and PSR B0656+14 in order to constraint the particle diffusion and
to estimate the contribution from these sources to the local flux of electrons and positrons measured
near earth.

2. Diffusion Coefficient

Both Geminga and PSR B0656+14 are middle-aged pulsars, with relatively low magnetic field,
and the modulation to the surrounding interstellar medium (ISM) due to the particle acceleration
by these sources is low. Therefore we consider the scenario that the accelerated particles diffuse
isotropically into the ISM. In order to constrain the electron and positron flux that reach the Earth
from these two pulsars, we need to know how fast these particles diffuse in the ISM, referred as
diffusion coefficient. It is a property of a medium and depends on the energy of the particles,

D(Ee) = D0(Ee/10GeV)δ (2.1)

where the typical value of the diffusion index δ is 1/3 and D0 is the diffusion coefficient at 10 GeV.
The diffuse coefficient has been measured from the Boron-Carbon ratio in hadronic cosmic rays.
Figure 1 summarizes the diffusion coefficients as a function of energy from different measurements.

However, the diffusion coefficient measured from the Boron-Carbon ratio is the average value
encountered over very long lifetime of hadronic cosmic rays which are expected to have spent
much of that time in the Galactic halo. The local diffusion coefficient could be different. The
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Figure 1: Diffusion coefficients from different measurements: blue [8], green [9], black [10], [4], and yellow
[11].

measurement on the source size around these two nearby pulsars will provide a constraint on the
local diffusion coefficient in the ISM.

3. HAWC Observations

The High Altitude Water Cherenkov (HAWC) Observatory, located in central Mexico at 4100
m above sea level, is sensitive to gamma rays between 100 GeV and 100 TeV. Thanks to its large
field of view of 2 steradians, HAWC has a good sensitivity to extended sources such as pulsar wind
nebulae. With 17 month of data, two very extended sources are detected spatially coincident with
Geminga and PSR B0656+14 [12]. Figure 2 shows the significance map in the region around these
two pulsars convolved with point spread function.

From Figure 2, there is clearly extended emission beyond the point spread function of HAWC
around both pulsars, showing evidence of electrons and positrons diffuse away from the source into
the ISM. We can use the size of the extended sources to constrain the diffusion coefficient. On the
studies of extended sources, the most commonly used morphological models are disk and Gaussian
models. However, with these models, there is no direct connection from the model parameters to
the physical parameters. In this work, we develop a particle diffusion model and apply it to the
HAWC data.

4. Diffusion Model

The TeV gamma-ray morphology is determined assuming a model where electrons and positrons
diffuse isotropically away from the source into the ISM. They produce TeV gamma rays through
ICS off low energy photons in the ISM, i.e. cosmic microwave background (CMB), infrared, and
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Figure 2: The significance map convolved with point spread function in the region around Geminga and
PSR B0656+14 with 17 months of HAWC data.

optical photons. We hereafter obtain an approximated formula for the gamma-ray emission of the
diffusion electron positron cloud which we will use to constrain the size of both HAWC sources.

In case of continuous injection of electrons (and positrons) from a point source at a constant
rate Q0E−Γ

e , the radial distribution of the electrons with energy Ee at an instant t and distance r
from the source is given by equation 21 of [13],

f (t,r,Ee) =
Q0E−Γ

e

4πD(Ee)r
er f c(

r
rd
) (4.1)

where D(Ee) is the diffusion coefficient as a function of electron energy Ee and rd is the diffusion
radius, up to which the electron efficiently diffuse to. They are defined as,

D(Ee) = D0(Ee/10GeV )δ rd = 2
√

D(Ee)tE (4.2)

The typical diffusion index δ is 1/3 and is fixed in this analysis. tE is the smaller of two timescales:
the injection time t (in this case the age of the pulsar) and the electron cooling time tcool , which is
a function of election energy and target photon energy,

tcool =
mec2

4/3cσT γ
· 1

µB +µph/(1+4γε0)3/2 (4.3)

where σT is the Thomson cross section, γ is the Lorentz factor of electrons, µB = B2/8π is the
energy density in the magnetic field, and µph is the energy density of target photon field with
average energy ε0 per photon. Equation 4.3 takes into the account the energy loss of electrons
due to both synchrotron in magnetic field and ICS off low energy photons. For the elections that
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produce TeV gamma rays through ICS, where the Klein-Nishina effects are important [14], the
ICS off infrared and optical photons in the ISM is highly suppressed, leaving only CMB photons
as important targets. At these energies, the cooling time is much shorter than the age of these two
pulsars. Therefore tE in equation 4.2 can be replaced by tcool .

Integrating the energy distribution of electrons and positrons along the observer’s line of sight,
and considering the gamma rays produced through ICS, we obtain the morphology of gamma rays
as a function of the distance d. An analytical approximation is found on this numerical integral,

fd =
1.2154

π3/2rd(d +0.06rd)
exp(−d2

r2
d
) (4.4)

With a source distance of dsrc, equation 4.5 becomes,

fθ =
1.2154

π3/2θd(θ +0.06θd)
exp(−θ 2

θ 2
d
) (4.5)

where θ is the angular distance from the pulsar and θd = rd/rsource ·180◦/π is the diffusion angle.
Combined with equation 4.5, 4.2, and 4.3, the diffusion angle is a function of electron energy Ee

and the target field,

θd = θ0(
Ee

Ee0
)

δ−1
2

√
B2/8π +µph/(1+4ε0Ee0/mec2)3/2

B2/8π +µph/(1+4ε0Ee/mec2)3/2 (4.6)

where θ0 is the diffusion angle at the pivot energy of Ee0. The relation between the mean electron
and gamma ray energy is given by [15],

< Ee >≈ 17 < Eγ >
0.54+0.046log10(<Eγ>/TeV ) (4.7)

The pivot energy Ee0 is chosen to be 100 TeV in this analysis, which corresponds to ∼ 20 TeV
gamma rays. Figure 3 compares the radial profile as a function of the distance from the pulsar from
three morphological models.

We then fit the gamma-ray emission around Geminga and PSR B0656+14 with the diffusion
model defined in equation 4.5 and 4.6 using the Multi-Mission Maximum Likelihood framework
[16], and calculate the diffusion coefficient of 100 TeV electrons based on the obtained diffusion
angle from the likelihood fit.

5. Results and Discussion

HAWC observations reveal two very extended TeV gamma-ray sources spatially coincident
with Geminga and PSR 0656+14, suggesting ultra-relativistic electrons and positrons accelerated
in our neighborhood. The results of the analysis on these two sources and the obtained diffusion
coefficient will be presented at ICRC2017. The implication on the positron contribution of these
sources to the local flux can be found in other two proceedings for this conference [17] [18].
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Figure 3: Radial profiles of three morphological models: disk, Gaussian, and diffusion model.
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