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Galactic diffuse emission has provided us with evidence for cosmic ray acceleration throughout
the Galaxy and the background for searches for physics beyond the Standard Model. However,
only the very limited measurements of the diffuse flux are available in TeV γ rays. The High
Altitude Water Cherenkov (HAWC) Observatory is well-suited for observing the diffuse emission
of very high energy with its unbiased, wide field of view (2 sr). Using data from HAWC, we
present techniques for measuring the diffuse flux and show preliminary results.
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1. Introduction

The Galactic diffuse flux we observe through high-energy Galactic γ rays is comprised of
unresolved point sources and "true" diffuse emission. In the GeV to TeV range, there are three
main contributions to the diffuse emission, namely, inverse Compton scattering, π0 decay and
bremsstrahlung. In brief, the production mechanisms involve:

• Inverse Compton scattering of cosmic microwave background, far infrared and optical pho-
tons by cosmic ray electrons.

• Interaction of cosmic rays with the interstellar medium which forms neutral pions that decay
into gammas (π0→ γγ).

• Deceleration of cosmic rays when propagating through the interstellar medium, hence the
production of γ rays through bremsstrahlung.

Unlike at GeV energies, at TeV, the diffuse emission may seem to be relatively less important
than the contributions from point sources [1]. Hence, analyses of diffuse γ-ray emission at TeV
energies are still sparse. However, diffuse emission in the inner Galaxy may be harder in terms of
spectrum than in the outer parts of the Galaxy [2], making it more significant than anticipated in
the TeV regime.

The Galactic diffuse flux is of intrinsic interest at all wavelengths and is a key tracer of cosmic
ray acceleration, diffusion, and propagation in the Galaxy. While the measurements of charged
cosmic rays such as elemental abundances and particle spectra can depend strongly on the Galactic
magnetic field and local features in the distribution of Galactic objects, the γ rays provide a global
picture of the cosmic-ray environment in the Milky Way. γ rays can, therefore, be used to test
models of particle diffusion and provide complementary information about cosmic-ray sources
more effectively than the observed cosmic rays on Earth.

Although our understanding of Galactic diffuse emission has progressed extensively for the
past few years, we still face many unanswered problems such as the distribution of the interstellar
gas, the models of cosmic ray diffusion and γ-ray diffusivity. Also, having a deeper understanding
of the diffuse emission can assist in separating unresolved sources from the "true" diffuse flux,
aiding identification of unknown γ-ray sources. The knowledge of the diffuse flux is especially
important in confused regions in proximity of the Galactic Plane.

2. HAWC

The High Altitude Water Cherenkov (HAWC) Observatory is a ground array located at latitude
of 19◦N and at an altitude of 4,100 meters in Sierra Negra, Mexico. HAWC consists of 300 water
Cherenkov detectors (WCDs) covering a large effective area of 22,000 m2. Of the 300 deployed
tanks, 294 have been instrumented [3]. Each WCD has a light-tight polypropylene bladder filled
with 200 kL of purified water. The bladder is encased in a steel tank. At the bottom of each WCD
there are three 8-inch Hamamatsu R5912 photomultiplier tubes (PMTs) oriented in an equilateral
triangle and one 10-inch R7081-HQE PMT anchored at the center.
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By combining the location and the time of each PMT triggered by an air shower, the core
position and the angle at which the primary particle has generated the air shower is reconstructed to
locate and identify the primary particle type. Simple topological cuts are applied to discriminate the
air showers produced by hadronic cosmic rays from γ-ray air showers. For a detailed explanation
of the event reconstruction, see [4].

The air shower trigger rate of HAWC is approximately 25 kHz, more than 99.9% of which
are events originating from cosmic rays. At HAWC’s altitude, a vertical shower from a 1 TeV
photon will have about 7% of the original photon energy. This energy increases to around 28%
at 100 TeV [3]. The main source of background to γ-ray observation is the hadronic cosmic-rays.
Therefore, individual γ-ray-induced air showers are distinguished from cosmic-ray showers using
their topology. HAWC has a duty cycle > 95% and a wide, unbiased field of view of 2 sr. As
such, HAWC is well-suited to study spatially extended structures, making it an excellent detector
to study the Galactic TeV γ-ray diffuse flux.

3. Simple Gaussian Model

Since the definition of diffuse emission requires measurement of flux not attributable to known
TeV γ-ray sources, the analysis of the diffuse flux using data from HAWC can be achieved us-
ing two different methods: assessment of residual flux after subtracting all the known TeV γ-ray
sources [5]; or, simultaneously fitting the diffuse emission and the known TeV sources in the region
of interest based on an estimated diffuse model. The latter is discussed in this paper. In both cases,
unresolved sources pose a considerable problem. At TeV, however, the γ-ray flux from resolved
sources make up most of the total observed Galactic γ-ray emission [1, 6]. Therefore, determining
the most accurate Galactic diffuse model is essential. In this section, we have assumed a latitudinal
profile of a simple Gaussian function [6] to describe the Galactic diffuse emission flux,

F = Ke
−b2

2σ2
b , (3.1)

where K is flux normalization, b is galactic latitude at a specific pixel and σb is Gaussian width.
Equation 3.1 is used to model the Galactic diffuse flux while freeing the flux normalization and the
Gaussian width during likelihood maximization.

Before applying the diffuse model to data, an extended source and a Gaussian diffuse source
models were injected into a pseudo map to simulate a confused region to test simultaneous fits.
This is displayed in Figure 1 where the color bar shows an arbitrary flux unit. The first plot on
the top left shows only the injected Gaussian diffuse source and the plot on the top right shows
the injected diffuse and extended sources. The bottom left is the residual plot after fitting and
subtracting the Gaussian diffuse source from the top right plot. There are regions where over
subtractions are visible because only the diffuse source was fitted and subtracted. The plot on the
bottom right shows the residual map after subtracting the diffuse and extended source models fitted
simultaneously. The application of multi-source fit displays an improved fit result of the diffuse
source when another source exists.

For the analysis with 25 months of HAWC data, the region of interest was set between−3◦ and
3◦ in Galactic latitude and between 15◦ and 21◦ in Galactic longitude. This was to select a source
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Preliminary
Figure 1: Top left: A map showing simulated diffuse source injected. Top right: A map after the injection of simulated
diffuse source and a simulated extended source. Bottom left: After fitting and subtracting only the diffuse source from
the top right plot. Bottom Right: After multi-source fitting and subtracting the diffuse source and the extended source
from the top right plot.

confused region on the Galactic Plane. Table 1 shows the Test Statistics [7] (TS) of the different
fits attempted in the same region of interest. With multi-source fits, the TS increases, meaning that
a better fit is being performed with added source models. Also, the residual plots, after subtracting
the resolved sources, are shown in Figure 2 in the form of significance maps [7]. The known
sources in the defined region include: 2HWC J1812-126; 2HWC J1819-150; and 2HWC J1825-
134 [1]. The result from Figure 2 displays how HAWC is capable of improving fit results by
applying a hypothetical diffuse model; namely by comparing bottom left and bottom right plots in
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Figure 2. This is done to demonstrate the importance of diffuse emission when studying a source
confused region, rather than to compute the correct diffuse emission model using data. Once we
become more confident with the simple Gaussian model, we plan to measure the diffuse emission
in HAWC data using sliding window scans. The strips will have small overlaps to reduce edge
effects.

Preliminary
Figure 2: Top left: Significance map of LS 5039 region. Top right: Residual map after fitting and subtracting the
Gaussian diffuse flux. Bottom left: Residual map after fitting and subtracting the 3 known sources (2HWC J1812-126,
2HWC J1819-150 and 2HWC J1825-134) in the region of interest. Bottom right: After simultaneously fitting and
subtracting the Gaussian diffuse flux and the known sources.
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Fit Description Test Statistics (TS) # Free Parameters
Diffuse Only 1102.6 2
Multi-source (Extd + PS) 1702.3 3
Multi-source (Diffuse + Extd + PS) 1826.0 5

Table 1: Fits results of LS 5039 region using 25 month dataset. First row shows the result of the diffuse flux fit only.
Second row shows the result of multi-source fitting the three known sources in the region. Third row shows the result of
multi-source fitting the three known sources and the diffuse flux.

4. Template Model

Another way to obtain the diffuse emission flux information is by using models from simu-
lations that take into account measurements of cosmic rays and distribution of gas and interstellar
radiation fields in the Galaxy. Hence, measurement of diffuse emission using existing template
models with data from HAWC is also under development.

GALPROP is a cosmic ray propagation code that specializes in the analysis of diffuse γ rays
and cosmic rays. The GALPROP project began in 1996 [8] and has been under a continuous devel-
opment since. The code was made public in 1998 and the analysis discussed here will use version
54, released in 2011 [9]. The GALPROP code uses various inputs such as direct measurements
of primary and secondary cosmic ray nuclei, electrons and positrons, γ rays, synchrotron radiation
and so on [10]. These are all interlinked to explain multiwavelength and multi-messenger obser-
vations [11]. Three contributions (bremsstrahlung, inverse Compton scattering and neutral pion
decay) available for the GALPROP template at 97.1 TeV are presented in Figure 3 [12].

DRAGON is another code that solves the diffusion equation of interstellar cosmic rays, in-
cluding inhomogeneous and anisotropic diffusion [13]. DRAGON is based on GALPROP version
50, but it allows and solves the transport equation in 3D, compared to GALPROP which uses a 2D
model.

The idea is to use a template model, such as GALPROP or DRAGON, that predicts diffuse
emission at TeV energies and implement them for the HAWC γ-ray data challenge. The goal is
to use them as a template in HAWC’s own likelihood minimization program to produce diffuse
flux measurements on TeV γ rays. The template is conformed by 3-axes: one energy axis; and
two spatial axes given in Galactic coordinates. The template will give the pixel by pixel flux
information of the region of interest. The flux in each map is obtained by using the interpolation
method, RegularGridInterpolator, in the SciPy library [14].

The calculated flux will be convolved with the detector response of the HAWC detector. This
will give the number of expected events that will be used in the likelihood analysis. In order to
fit the diffuse emission with the template, the flux normalization factor is set free. The likelihood
calculation is performed by the Multi-Mission Maximum Likelihood (3ML) framework [15] and
the Likelihood Fitting Framework (LiFF) [16].

5. Conclusion

HAWC is capable of observing and measuring TeV γ rays produced by Galactic diffuse emis-
sions. Having a good comprehension of the diffuse emission in the TeV regime is important.
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Figure 3: Display of GALPROP model that predicts diffuse emission at TeV energies. Three contributions -
bremsstrahlung, inverse Compton scattering and neutral pion decay - are available. The files are 3D: Galactic longi-
tude, Galactic latitude and energy. The bin size is 0.5◦ and the maps contain the whole sky [12].

Moreover, analysis of pointlike and extended sources near the Galactic Plane require a good un-
derstanding of the diffuse emission. Therefore, different techniques are being developed within
the HAWC collaboration and this paper introduces some of these at work. The simple Gaussian
method is already being used for multi-source fits and an example of this in a confused region has
been presented. Also, preliminary diffuse flux measurements such as longitudinal and latitudinal
profiles are under study [5]. The template method, on the other hand, is expected to allow exist-
ing Galactic diffuse templates, based on cosmic-ray calculations from GALPROP / DRAGON, to
produce maximum likelihood fits to the data with 3ML [15]. Once available, the template method
should also be compatible with multi-source fits.
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