
P
o
S
(
I
C
R
C
2
0
1
7
)
7
6
5

Towards a 3D analysis in Cherenkov γ-ray
astronomy

Jouvin L.1, Deil C.2, Donath A.2, Kerszberg D.3, Khelifi B.1, Lemière A.1, Terrier R.1, .
E-mail: lea.jouvin@apc.in2p3.fr

1 APC (UMR 7164, CNRS, Université Paris VII, CEA, Observatoire de Paris), Paris
2 Max-Planck-Institut für Kernphysik, PO Box 103980, D 69029 Heidelberg, Germany
3 LPNHE, Universiteé Pierre et Marie Curie Paris 6, CNRS/IN2P3, Paris

The development of a 3D or cube analysis to simultaneously fit a spectral and morphological
model to the data is a challenge in Cherenkov γ-ray astronomy. The strong variation of the
instrument response functions and of the residual cosmic rays background with the observation
conditions makes it very difficult to build a coherent background model across the whole energy
range. Nevertheless, with improving sensitivities and angular resolution of current Cherenkov
telescopes and next generation instruments such as the Cherenkov Telescope Array, the complex
morphology of the regions with diffuse emission or multiple sources requires the development of
this technique.
We developed a prototype for cube analysis along with corresponding background models for
varying observations conditions. The prototype as well as the production of background model
was implemented in the software Gammapy, an open source Python package for γ-ray Astronomy
that provides tools to simulate and analyse the γ-ray sky for imaging atmospheric Cherenkov
telescopes. To validate the method, we performed a systematic comparison between this cube
analysis and the classical 1D spectral fitting on point sources using a Monte Carlo simulation
from the H.E.S.S. collaboration.
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3D analysis in Gammapy

1. Introduction

With the improvements of the sensibility and angular resolution in Cherenkov very high en-
ergy (VHE) γ-ray astronomy, the sky images has revealed sources and diffuse emission with a
morphology always more precise and complex. The development of a 3D analysis (also called
cube analysis) to simultaneously fit a spectral and morphological model on a data cube (energy,
longitude and latitude) is therefore crucial in order to be able to distinguish the several compo-
nents of a same emission. The 3D analysis requires the knowledge a-priori of a background model.
In Cherenkov γ-ray astronomy, instrument response functions (IRF) and the residual background
present strong variations with the observation conditions. Is makes it very difficult to build a co-
herent background model whatever the energy band.

In the section 2, we will present the general principle of the 3D analysis we have implemented
in the software Gammapy [1], an open-source Python package for γ-ray astronomy that provides
tools to simulate and analyse the γ-ray sky for imaging atmospheric Cherenkov telescopes. In
particular, we will briefly explain the method we adopt to construct a background model from
H.E.S.S. data. In the section 3, we will present the Monte Carlo (MC) tool we developed to test the
3D analysis. From MC simulation realized by the H.E.S.S. collaboration, a systematic comparison
between the 3D analysis and the classical 1D spectral fitting on point sources will be presented.

2. 3D analysis

Principle The 3D analysis is the simultaneous fit of a spectral and morphological model on a
data cube. It is based on the comparison between a cube of measured events (ON cube) and a cube
of predicted events by a combined model (figure 1). The 3D cube is defined for a given dataset
using a 2D spatial binning (e.g. longitude, latitude) and a 1D energy binning. The ON cube is
composed of the residual background as well as the γ-ray signal from sources. Therefore, in order
to be compared to the data, the predicted data cube have also to be composed of a background
(predicted by a background model) and from a γ-ray signal (predicted by the source model).

The adjustment of the spectral and morphological parameters assumed for the source is ob-
tained by a comparison between the number of predicted events by the model and the number of
measured events in each energy bin and pixel of the cube. This comparison is realized by mini-
mizing a likelihood function taking into account the Poisson distribution of the number of events
in each bin with the Python package Sherpa (CIAO v4.5 [2]) that was adapted in Gammapy for a
3D fitting combining a spatial and a spectral component.

Background Model For the background it is not possible tu use MC simulation, essentially for
storage capacity and computing time reasons but also due to the limitation of the hadronic shower
models and of the atmosphere knowledge. Our approach to construct the model background cube
in reconstructed energy for each run is based on radial acceptance curves. The acceptance tables
give the radial dependence of the residual background events. They are determined from region
without γ-ray source in the H.E.S.S. observations and assuming a radial symmetry to the center
of the camera. We computed these curves for four zenith angle bands (0− 34 ◦, 34− 49 ◦, 49−
61 ◦ et 61− 72 ◦) and 25 reconstructed energy bins logarithmically spacing between 0.1 and 100
TeV. For high energy bins, high zenith angle bands or large offset, the tables can present strong
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Figure 1: Illustration of the construction of the cube of predicted events for one energy band from the back-
ground cube, the exposure and PSF cube. The spectral and spatial parameters are then fitted by comparing
the predicted cube events to the measured cube events for each pixel of the images and each energy bin of
the cube.

fluctuations. We developed a smoothing algorithm of these curves based on an adaptive gaussian
kernel depending on the available statistic used to create the curves.

For a given zenith angle band, the radial acceptance is estimated from the previous model
curves by integrating them on the analysis energy bin. For an energy band 1.5-4 TeV, the radial
acceptance is presented on the figure 2.a. Assuming a radial symmetry, for a given observation at
a certain zenith angle, a model background map is created by rotating the radial acceptance curve
for each energy bin of the cube. By summing the background maps of each observation, we obtain
a predicted background map for a set of observations. Repeating the operation on each energy
band of the cube, we obtain a predicted background cube. The normalisation of the background
is done for each energy bin. By using the regions without source in the FOV of the cube (spatial
dimension), we impose the number of measured events in these regions to be equal to the number
of events predicted by the background model.

Source model The source model is composed of a:

• spectral model: spectral law, φ , e.g. a power law or a power law with an exponential cutoff.

• spatial model: represents the morphology M of the source. For example, for a source with a
simple symmetric morphology as we will study in the section 3, we can use a 2D symmetric
Gaussian. The adjusted width will constrain the extension of the source, the position of the
maximum will give the position of the source and the amplitude will allow to obtain the flux
of the source.

Instrument response function The IRFs are computed via MC simulation of γ-ray showers and
of the detector. For the 3D analysis, three IRFs are necessary:
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• the mean exposure cube (EXPOSURE). In particular for the study of diffuse emission, it is
really important to take into account the gradients of the exposure. This is why the spatial
model is multiply by the exposure cube. The exposure is the product of the effective area by
the time of each observation. The total exposure cube is the sum of the exposure cube for
each observation of the given dataset. For a given dataset composed of Nobs observations, it
is evaluated at each true energy Etrue at the center of the energy bin of the cube and at each
pixel with an offset θ i

coord from the center of the FOV of the run i:

Exposure(θ i
coord ,Etrue) =

Nobs

∑
i=1

Ai(θ
i
coord ,Etrue)×T i

obs (2.1)

with Ai the effective area and T i
obs the livetime associated to the run i.

• the mean point spread function cube (PSF) where the PSF is the spatial distribution of the
reconstructed γ-ray directions from a point source. It is a probability. For the H.E.S.S.
telescope, a radial symmetry has always be assumed and we only compute 2D table.

• the energy resolution, R, gives the probability to reconstruct an event at a reconstructed
energie E’ knowing that its true energy is E.

Currently in the 3D analysis in Gammapy, the energy resolution and the PSF are not calculated
for each pixel in the FOV of the cube. Both are determined before the analysis at the center of the
region of interest (ROI). This approximation implies that they are constant over the ROI. We will
have to test the impact of this approximation but it allows a major gain of computation time.

The PSF is determined in function of the distance to the source rad. The mean PSF of the
Nobs observations is evaluated at each true energy Etrue of the cube and at a position θ i

pos of the ROI
from the center of the FOV of the run i:

PSF(rad,θ i
pos,Etrue) =

∑
Nobs
i Ai(θ

i
pos,Etrue)×T i

obs ×PSFi(rad,θ i
pos,Etrue)

∑
Nobs
i Ai(θ i

pos,Etrue)×T i
obs

(2.2)

It is weighted by the effective area in order to conserve the number of predicted counts when we
stack the observations. By assuming a radial symmetry, we project this 1D table on the 2D map for
each energy of the cube.

The data cube and the background cube are constructed in reconstructed energy. Consequently,
the cube of the predicted events by the source model have also to be converted in reconstructed
energy. This is why we have to consider the energy resolution of the instrument. The number of
predicted counts Ntrue in a true energy bin Etrue is given by:

Ntrue = (2Dspatialmodel×Exposure(Etrue))∗PSF(Etrue)∗φ(Etrue) (2.3)

By combining the number of predicted counts in each true energy bin with the energy resolu-
tion R, we obtain the number of predicted counts in each reconstructed energy bin [Ereco

i,Ereco
i+1]

by the following relation:

Npred(Ereco
i,Ereco

i+1) =
∫

Etrue

Ntrue

∫ Ereco
i+1

Ereco
i

R(Etrue,Ereco)dEreco dEtrue (2.4)
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The mean energy resolution for a given dataset composed of Nobs observations is determined
similarly to the mean PSF (equation 2.2).

3. First validation of the 3D analysis implemented in Gammapy with a MC tool

In order to validate the 3D analysis approach in Gammapy, we used a MC simulation of γ-ray
showers [4] and of the H.E.S.S. detector [5] provided by the H.E.S.S. collaboration. The recon-
structed events of these simulations are obtained by applying the reconstruction and γ/background
discrimination algorithms from one analysis pipeline of H.E.S.S. [6]. We simulated a test source
from the reconstructed events list of these simulations and add these events to the ones of a real
H.E.S.S. observation creating thus a fake observation. For each of these observations, we applied
the 1D classical spectral analysis and the 3D analysis presented in the previous section, in order to
perform a systematic comparison between the two approaches for the reconstruction of the spec-
tral parameters. The 1D spectral fitting implemented in Gammapy is based on the forward folding
method and the profile likelihood approach [7, 8] and is similar to the one in the standard H.E.S.S.
analysis tools.

We used one MC simulation matching with a zenith angle of 0◦, an instrument optical trans-
mission of 80% of the nominal one and an offset of the γ-ray signal to the center of the FOV of 0.5◦.
The γ-rays are generated following a power law E−Γ of spectral index Γ = 2. In order to simulate
a test source in the FOV of one observation, we select randomly and uniformly different samples
from the reconstructed events of the MC simulation. These samples match with different statistic
representing different signal to noise ratio. In order to test other spectral laws with a spectral index
Γ >2 or with an energy cutoff, the events are selected from the MC simulation depending on their
energy to follow the new spectral law. The number of simulated γ-rays, Nsimu, is around 760 000 on
a total simulated area A with a radius of R = 550 m (∼ 3500 m2). After applying the reconstruction
and discrimination algorithms of the used H.E.S.S. analysis methods, the number of reconstructed
events, Nreco, is around 20 000. For a given observation time, Tobs, the different numbers of selected
MC events, Nt , match with different flux of the test source, φ , estimated by:

φ = (
Nsimu

Nreco
×Nt)/(A×Tobs)

In order to test the sensibility of the 3D analysis to our background model, we use real back-
ground events of a run from the observation of the AGN PKS 2155-304. The test source is injected
in this run having same observational conditions than the used MC simulation as shown in fig-
ure 2.b. We removed all the events from PKS 2155-304 (for safety a region of 0.3◦ radius). The
background events of the real observation are visible throughout the FOV.

We then applied on this fake observation the 1D spectral fitting and the 3D analysis. The
general characteristics of the two approaches are summarized in the table 1. For the 3D analysis
the total size of the FOV is 2.5◦×2.5◦ to normalise correctly the background model. The fitting is
then realised on an ROI of (1◦,1◦) around the MC source. For point source, in order to increase the
signal to noise ratio, the ROI during the 1D classical spectral fitting is set to 0.1◦. Specific IRFs are
computed for this analysis taking into account the angular cut applied on the events. For the 3D
analysis, the source is assumed to be fully contained in the ROI.
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(a)

MC	  source	  

PKS	  2155-‐304	  

(b)

Figure 2: (a) Background rate depending on the offset to the center of the camera for an energy band 1.5-4
TeV and two zenith angle bands: 0-34◦ (blue) and 49-61◦ (red). The solid lines are the smooth acceptance
curve (b) Spatial distribution of the simulated events for the MC source (constituted of 100 events) and of
the background events from an observation of the AGN PKS 2155-304.

Table 1: Characteristics of the 1D and 3D analysis
1D Analysis 3D Analysis
- E=0.1-100 TeV, 20 bins - Cube: centered on the MC source

- fitting energy range: determined on the available
statistic in each energy bin

- E=0.5-100 TeV, 20 bins
- FOV: 2.5◦×2.5◦

- spatial morphology: 2D symmetric Gaussian
- ROI: disk centered on the MC source with R=0.1◦ - ROI=(1◦,1◦) around the MC source
- Background computation: reflected region [3] - Background computation: from our background

model

For each value of Nt of MC γ-ray injected, we produced 200 sets of randomly selected Nt

events. For each one, we applied the two fitting procedures. Finally we obtained a distribution
of the reconstructed parameters from these 200 test observations. On the figure 3, the blue points
represent the median of the distribution and the error bars the dispersion around the median (inter-
val around the median containing 68% of the distribution). For the spectral component, we have
simulated two spectral laws: a simple power law with a spectral index Γ = 2 (figures 3 a,b) and
a power law with an exponential cutoff at 10 TeV for a spectral index Γ = 2 (figures 3 c,d). The
spectral parameters on the panels on the left are adjusted with the 1D spectral fitting and on the
panels on the right with the 3D analysis.

For the two spectral laws, the spectral parameters and in particular the exponential cutoff are
well reconstructed when the statistic is sufficient. The median of the distribution is well centered
on the injected parameters. The bias and the error bars are larger for the 1D spectral analysis since
for a given sample size, the ROI used for the 1D spectral fitting is 0.1◦. Only ∼ 50% of the total
events sample are used in the fit. For the low statistic, several observations are indeed necessary
to detect significantly a source. For an observation of around 28 minutes, the 1D spectral fitting
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presents a bias that was already observed in the standard H.E.S.S. analysis tool. In the 3D analysis,
the fit is realized on a (1◦,1◦) region around the MC source. Therefore all the simulated events
are used during the analysis. This is why, even with only 100 events, we observe very small bias
with the 3D analysis. We also tested softer spectral laws and higher energy cutoff. The spectral
parameters were still perfectly reconstructed, in particular with the 3D analysis. The bias in the 3D
analysis, inferior to 1% , is small. It is well below the CTA requirements for other systematics on
parameters produced by early analysis steps, e.g. calibration, statistical error on the effective area.
If the 3D analysis bias stay as small as presented here, the main systematics for CTA will come for
our limited knowledge of the instrument.

In the 3D analysis, in addition to the spectral components, we simultaneously fitted a mor-
phology for the source. In this test, we used a 2D symmetric Gaussian. The width of the Gaussian
allows to estimate the constraints we have on the source extension, being here inferior to 14 arc-
sec taking 90% of the distribution values. The simulated MC source is then well compatible with a
point source. In parallel, the position of the Gaussian is always adjusted on the real source position.
The error we get on the source position of 0.01◦ for a spatial binning of the cube of 0.01◦ comes
from the intrinsic method we are using to convolve by the PSF cube. Indeed the PSF cube has the
same spatial binning than the data cube. Therefore the position of the center of the 2D gaussian
is limited by the spatial grid. For point source, a more precise method must be developed for the
convolution by the PSF. One idea could be to use a thinner spatial binning for the model cube. The
3D analysis is perfectly able to reconstruct the spectral and spatial parameters of the point source.

4. Conclusion and Perspectives

This new MC tool allows to inject a fake MC source in an observation. This is the first step for
validating the 3D analysis recently implemented in Gammapy. For one observation, we validated
the reconstruction of the spectral parameters for a power law or a power law with an exponential
cutoff for different flux of the MC source. The reconstruction of the spectral and spatial parameters,
simultaneously adjusted, is well under control with small bias.

The future tests will be first to simulate a MC source in an observation with different obser-
vational conditions. To test the adjustment of the morphology, we have to create morphologies for
more extended sources. Finally, to test the reconstruction of the spectral and spatial parameters
for lower statistics, we have to develop the simulated data in multiple observations with differ-
ent observational conditions stacked together. We will then be able to check the stacking of the
observations and the computation of the mean instrument functions.
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Figure 3: Median of the spectral parameters distribution fitted on 200 test observations (blue points). The
MC source is simulated with a simple power law (∝ E−Γ) of spectral index Γ = 2 (a,b) and with a power
law with an exponential cutoff (∝ E−Γ exp(−βE)) at 10 TeV (β = 0.1) and of spectral index Γ = 2 (c,d)
for different differential flux at 1 TeV (abscissa on the figures). The errors bars match the dispersion of the
distribution around the median value. The red horizontal lines are the injected parameters used to simulate
the MC source. On the left figures, the results are obtained using the 1D classical spectral analysis and on
the right plots using the 3D analysis.
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