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Gammapy is a Python package for high-level gamma-ray data analysis built on Numpy, Scipy
and Astropy. It enables us to analyze gamma-ray data and to create sky images, spectra and
lightcurves, from event lists and instrument response information, and to determine the position,
morphology and spectra of gamma-ray sources.
So far Gammapy has mostly been used to analyze data from H.E.S.S. and Fermi-LAT, and is now
being used for the simulation and analysis of observations from the Cherenkov Telescope Array
(CTA). We have proposed Gammapy as a prototype for the CTA science tools. This contribu-
tion gives an overview of the Gammapy package and project and shows an analysis application
example with simulated CTA data.
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1. Introduction

The Cherenkov Telescope Array (CTA) will observe the sky in very-high-energy (VHE, E >
20GeV) gamma-ray light soon. CTA will consist of large telescope arrays at two sites, one in the
southern (Chile) and one in the northern (La Palma) hemisphere. It will perform surveys of large
parts of the sky, targeted observations on Galactic and extra-galactic sources, and more specialized
analyses like a measurement of charged cosmic rays, constraints on the intergalactic medium opac-
ity for gamma-rays and a search for dark matter. Compared to current Cherenkov telescope arrays
such as H.E.S.S., VERITAS or MAGIC, CTA will have a much improved detection area, angular
and energy resolution, improved signal/background classification and sensitivity. CTA is expected
to operate for thirty years, and all astronomers will have access to CTA high-level data, as well as
CTA science tools (ST) software. The ST can be used for example to generate sky images and to
measure source properties such as morphology, spectra and light curves, using event lists as well
as instrument response function (IRF) and auxiliary information as input.

Gammapy is a prototype for the CTA ST, built on the scientific Python stack and Astropy
[1], optionally using Sherpa [2, 3, 4] or other packages for modeling and fitting (see Figure 1). A
2-dimensional analysis of the sky images for source detection and morphology fitting, followed by
spectral analysis, was first implemented. A 3-dimensional analysis with a simultaneous spatial and
spectral model of the gamma-ray emission, as well as background (called “cube analysis” in the
following) is under development. A first study comparing spectra obtained with the classical 1D
analysis and the 3D cube analysis using point source observations with H.E.S.S. is presented in [5].
Further developments and verification using data from existing Cherenkov telescope arrays such
as H.E.S.S. and MAGIC, as well as simulated CTA data is ongoing. Gammapy is now used for
scientific studies with existing ground-based gamma-ray telescopes [6, 7], the Fermi-LAT space
telescope [8], as well as for CTA [9, 10, 11].

In this writeup we focus on the software and technical aspects of Gammapy.We start with a
brief overview of the context in Section 2, followed by a description of the Gammapy package in
Section 3, the Gammapy project in Section 4 and finally our conclusions concerning Gammapy as
as CTA science tool prototype in Section 5.

2. Context

Prior to Gammapy, in 2011/2012, a collection of Python scripts for the analysis of IACT data
was released as a first test of open-source VHE data analysis software: “PyFACT: Python and
FITS Analysis for Cherenkov Telescopes” [12]. This project is not updated anymore, but it was
the first implementation of our idea to build a CTA science tools package based on Python and
using Numpy and Scipy, during the first development stages of the CTA project. In 2011, the
astronomical Python community came together and created the Astropy project and package [1],
which is a key factor making Python the most popular language for astronomical research codes (at
least according to this informal analysis [13] and survey [14]). Gammapy is an Astropy affiliated
package, which means that where possible it uses the Astropy core package instead of duplicating
its functionality, as well as having a certain quality standard such as having automated tests and
documentation for the available functionality. In recent years, several other packages have adopted
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Figure 1: The Gammapy software stack. Required dependencies (Python, Numpy and Astropy) are illus-
trated with solid arrows, optional dependencies (Scipy and Sherpa) with dashed arrows.

the same approach, to build on Python, Numpy and Astropy. To name just a few, there is ctapipe
(github.com/cta-observatory/ctapipe), the prototype for the low-level CTA data processing pipeline
(up to the creation of lists of events and IRFs); Naima for modeling the non-thermal spectral energy
distribution of astrophysical sources [15]; PINT, a new software for high-precision pulsar timing
(github.com/nanograv/PINT), and Fermipy (github.com/fermipy/fermipy), a Python package that
facilitates analysis of data from the Large Area Telescope (LAT) with the Fermi Science Tools and
adds some extra functionality.

We note that many other astronomy projects have chosen Python and Astropy as the basis
both for their data calibration and reduction pipelines and their science tools. Some prominent
examples are the Hubble space telescope (HST) [16], the upcoming James Webb Space Telescope
(JWST) [17] and the Chandra X-ray observatory [2, 18]. Even projects like LSST that started
their analysis software developments before Astropy existed and are based on C++/SWIG are now
actively working towards making their software interoperable with Numpy and Astropy, to avoid
duplication of code and development efforts, but also to reduce the learning curve for their science
tool software (since many astronomers already are using Python, Numpy and Astropy) [19].

For current ground-based IACTs, data and software are mostly private to the collaborations
operating the telescopes. CTA will be, for the first time in VHE gamma-ray astronomy, operated
as an open observatory. This implies fundamentally different requirements for the data formats
and software tools. Along this path, the current experiments, H.E.S.S., MAGIC and VERITAS,
have started converting their data to FITS format, yet relying on different (some private, some
open) analysis tools, and many slightly different ways to store the same information in FITS files
appeared. The CTA high-level data model and data format specifications are currently being written
and will give a framework to the current experiments to store data. The methods to link events to
IRFs still have to be extended to support multiple event types and the IRF and background model
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formats will have to be extended to be more precise [20]. The Gammapy team is participating in
and contributing to the effort to prototype and find a good high-level data model and formats for
CTA.

3. Gammapy package

Gammapy offers the high-level analysis tools to generate science results (images, spectra, light
curves and source catalogs) based on input data consisting of reconstructed events (with an arrival
direction and an energy) that are classified according to their types (e.g. gamma-like, cosmic-
ray-like). In the data processing chain of CTA, the reconstruction and classification of events are
realized by another Python package, ctapipe1. Data are stored in FITS format. The high-level
analysis consists of:

• selection of a data cube (energy and positions) around a sky position from all event lists,
• computation of the corresponding exposure,
• estimation the background directly from the data (e.g. with a ring background model [21])

or from a model (e.g. templates built from real data beforehand),
• creation of sky images (signal, background, significance, etc) and morphology fitting,
• spectrum measurement with a 1D analysis or with a 3D analysis by adjusting both spectral

and spatial shape of gamma-ray sources,
• computation of light-curves and phasograms, search for transient signals,
• derivation of a catalog of excess peaks (or a source catalog).

For such an analysis, Gammapy is using the IRFs produced by the ctapipe package and processes
them precisely to get an accurate estimation of high-level astrophysical quantities.

The Gammapy code base is structured into several sub-packages dedicated to specific classes
where each of the packages bundle corresponding functionality in a namespace (e.g. data and obser-
vation handling in gammapy.data, IRF functionality in gammapy.irf, spectrum estimation and mod-
eling in gammapy.spectrum . . . ). The Gammapy features are described in detail in the Gammapy
documentation (docs.gammapy.org) and many examples given in the tutorial-style Jupyter note-
books, as well as in [22]. Figure 3 shows one result of the “CTA data analysis with Gammapy”
notebook: a significance sky image of the Galactic center region using 1.5 hours of simulated CTA
data. The background was estimated using the ring background estimation technique, and peaks
above 5 sigma are shown with white circles. For examples of CTA science studies using Gammapy,
we refer you to other posters presented at this conference: Galactic survey [10], PeVatrons [11] and
extra-galactic sources [9]. Several other examples using real data from H.E.S.S. and Fermi-LAT,
as well as simulated data for CTA can be found via docs.gammapy.org by following the link to
“tutorial notebooks”.

The Gammapy Python package is primarily built on Numpy [23], and Astropy [1] as core
dependencies. Data is stored in Numpy arrays or objects such as astropy.coordinates.SkyCoord
or astropy.table.Table that hold Numpy array data members. Numpy provides many functions for
array-oriented computing and numerics, and Astropy provides astronomy-specific functionality.
The Astropy functionality most commonly used in Gammapy is astropy.io.fits for FITS data I/O,
astropy.table.Table as a container for tabular data (e.g. event lists, but also many other things like

1github.com/cta-observatory/ctapipe
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1 """Make a counts image with Gammapy."""

2 from gammapy.data import EventList

3 from gammapy.image import SkyImage

4 events = EventList.read(’events.fits’)

5 image = SkyImage.empty(

6 nxpix=400, nypix=400, binsz=0.02,

7 xref=83.6, yref=22.0,

8 coordsys=’CEL’, proj=’TAN’,

9 )

10 image.fill_events(events)

11 image.write(’counts.fits’)

Figure 2: An example script using Gammapy to make a counts image from an event list. This is used in
Section 3 to explain how Gammapy achieves efficient processing of event and pixel data from Python: all
data is stored in Numpy arrays and passed to existing C extensions in Numpy and Astropy.

spectral points or source catalogs), astropy.wcs.WCS for world coordinate systems mapping pixel
to sky coordinates, as well as astropy.coordinates.SkyCoord and astropy.time.Time objects to rep-
resent sky coordinates and times. Astropy.coordinates as well as astropy.time are built on ERFA
(github.com/liberfa/erfa), the open-source variant of this IAU Standards of Fundamental Astron-
omy (SOFA) C library (www.iausofa.org). In Gammapy, we use astropy.units.Quantity objects
extensively, where a quantity is a Numpy array with a unit attached, supporting arithmetic in com-
putations and making it easier to read and write code that does computations involving physical
quantities.

As an example, a script that generates a counts image from an event list using Gammapy is
shown in Figure 2. The point we want to make here is that it is possible to efficiently work with
events and pixels and to implement algorithms from Python, by storing all data in Numpy arrays
and processing via calls into existing C extensions in Numpy and Astropy. E.g. here EventList
stores the RA and DEC columns from the event list as Numpy arrays, and SkyImage the pixel data
as well, and image.fill(events), and all processing happens in existing C extensions implemented or
wrapped in Numpy and Astropy. In this example, the read and write methods call into astropy.io.fits
which calls into CFITSIO ([24]), and the image.fill(events) method calls into astropy.wcs.WCS and
WCSLib ([25]) as well as numpy.histogramdd.

Gammapy aims to be a base package on which other more specialized packages such as Fer-
mipy (github.com/fermipy/fermipy) for Fermi-LAT data analysis or Naima [15] for the modeling
of non-thermal spectral energy distributions of astrophysical sources can build. For this reason we
avoid introducing new required dependencies besides Numpy and Astropy. That said, Gammapy
does import the following optional dependencies to provide extra functionality (sorted in the order
of how common their use is within Gammapy). Scipy [26] is used for integration and interpolation,
Matplotlib [27] for plotting and Sherpa [2, 3, 4] for modeling and fitting. In addition, the follow-
ing packages are used at the moment for functionality that we expect to become available in the
Astropy core package within the next year: regions (astropy-regions.readthedocs.io) to handle sky
and pixel regions, reproject (reproject.readthedocs.io) for reprojecting sky images and cubes and
healpy (healpy.readthedocs.io) for HEALPix data handling.
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Figure 3: Application example: significance image for the Galactic centre region using 1.5 hours of simu-
lated CTA data. White circles are peaks above 5 sigma.

4. Gammapy project

In this section we describe the current setup of the Gammapy project. We are using the com-
mon tools and services for Python open-source projects for software development, code review,
testing, documentation, package distribution and user support.

Gammapy is distributed and installed in the usual way for Python packages. Each stable
release is uploaded to the Python package index (pypi.python.org), and downloaded and installed
by users via pip install gammapy (pip.pypa.io). Binary packages for conda are available via the
conda Astropy channel (anaconda.org/astropy/gammapy) for Linux, Mac and Windows, which
conda users can install via conda install gammapy -c astropy. Binary packages for the Macports
package manager are also available, which users can install via port install gammapy. At this
time, Gammapy is also available as a Gentoo Linux package (packages.gentoo.org/packages/dev-
python/gammapy) and a Debian Linux package is in preparation.

Gammapy development happens on Github (github.com/gammapy/gammapy). We make ex-
tensive use of the pull request system to discuss and review code contributions. For testing we
use pytest (pytest.org), for continuous integration Travis-CI (Linux and Mac) as well as Appveyor
(Windows). For documentation Sphinx (www.sphinx-doc.org), for tutorial-style documentation
Jupyter notebooks (jupyter.org) are used. For Gammapy developer team communication we use
Slack (gammapy.slack.com). A public mailing list for user support and discussion is available
(groups.google.com/forum/#!forum/gammapy). Two face-to-face meetings for Gammapy were or-
ganized so far, the first on in June 2016 in Heidelberg as a coding sprint for developers only, the
second on in February 2017 in Paris as a workshop for both Gammapy users and developers.

Gammapy is under very active development, especially in the area of modeling, and in the
implementation of a simple-to-use, high-level end-user interface (either config file driven or com-
mand line tools). We will write a paper on Gammapy later this year and are working towards a
version 1.0 release.
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5. Conclusions

In the past two years, we have developed Gammapy as an open-source analysis package for
existing gamma-ray telescope and as a prototype for the CTA science tools. Gammapy is a Python
package, consisting of functions and classes that can be used as a flexible and extensible toolbox
to implement and execute high-level gamma-ray data analyses.

We find that the Gammapy approach, to build on the powerful and well-tested Python pack-
ages Numpy and Astropy, brings large benefits: a small codebase that is focused on gamma-ray
astronomy in a single high-level language is easy to understand and maintain. It is also easy to
modify and extend as new use cases arise, which is important for CTA, since it can be expected
that the modeling of the instrument, background and astrophysical emission, as well as the analysis
method in general (e.g. likelihood or Bayesian statistical methods) will evolve and improve over
the next decade. Last but not least, the Gammapy approach is inherently collaborative (contribu-
tions from ∼30 gamma-ray astronomers so far), sharing development effort as well as know-how
with the larger astronomical community, that to a large degree already has adopted Numpy and
Astropy as the basis for astronomical analysis codes in the past 5 years.
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