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In the recent years, physics experiments have definitely entered the Big Data era. Future tele-
scopes (such as the Square Kilometre Array, the Cherenkov Telescope Array, the Large Synoptic
Survey Telescope, Virgo/LIGO...) will generate more data than ever. This is an exciting time as
the analysis and the combination of all these data will lead to new discoveries and even to new
ways to do science, but it comes with a price. Data management is now a challenge on its own.
The H2020 project ASTERICS is addressing these challenges by bringing together the whole
astrophysics and Astroparticle around the ESFRI projects to enable them to interoperate as an
integrated, multi-wavelength and multi-messenger telescope. In particular, the OBELICS work
package is developing common solutions for the generation, the integration and the analysis of
data.
Under this framework, new solutions and algorithm based on high performance computing (HPC)
to analyse data from Atmospheric Cherenkov Telescopes (IACT) are developed. Several devel-
opments are presented in this paper: 1. An original compression algorithm dedicated to integers.
It is therefore especially interesting for physics experiments dealing with digitized signals such
as IACT. Coupled with the LZMA algorithm, it considerably reduces the compression time while
keeping a maximal compression ratio. 2. A HPC library with low level algorithms. Applied
to the Hillas reconstruction using only reduced momentum and coupled with an adapted data
format, these algorithms improve the computing times by a factor greater than 300. 3. A new
reconstruction method based on Single Value Decompositions (SVD). This method compares the
data to an image template (generated by Monte Carlo) using a handful of representative values.
This considerably reduces the computation time and memory usage while extracting most of the
information.

35th International Cosmic Ray Conference
10-20 July, 2017
Bexco, Busan, Korea

∗Speaker.



P
o
S
(
I
C
R
C
2
0
1
7
)
7
7
1

Thomas Vuillaume

1. Introduction

Astronomy and the new generation of instruments has entered the Big Data era. The generated
volumes of data are unprecedented and this new paradigm imposes great constraints on architec-
tures but also on data analysis algorithms.

The Cherenkov Telescope Array (CTA) is the next generation of Imaging Atmospheric Cherenkov
Telescopes (IACT) and makes no exception. It will here serve as a use-case experiment. Thanks
to its unprecedented sensitivity, it will greatly improve our understanding of the high-energy uni-
verse. But an improved sensitivity also means greater data volumes. The challenges in terms of
data reduction and data analyses are immense and it seems that the most complex algorithms are
hardly scalable. This will demand to investigate faster and more scalable algorithms.

This work describes a set of solutions developed to answer the challenges faced by upcoming
physics experiments. The algorithms described here are very low-level and can be applied to a
large variety of domains. They have been however tested and refined more specifically for IACT
images.

In the first section, we present a new lossless compression algorithm for digitalized data. This
algorithm has the advantage to provide a very good compression ratio while keeping very low
compression and decompression times, thus being applicable to the reduction of huge data volumes.

In the second section, we present our high performance computing (HPC) library using vec-
torization solutions. The algorithms in this library are low-level but have been applied to the com-
putation of Hillas parameters for IACT images. These parameters are at the core of most of the
IACT data analysis algorithms.

In the last section, we propose an idea for a new reconstruction method based on spectral value
decomposition. These values present the advantage to contain more information on the images than
the Hillas parameters, thus allowing for more complex analysis including more physics.

The developments presented here has been realized in the framework of the ASTERICS-
H2020 project and as such are available as an open-source software package to the Astronomy,
Astrophysics and Astroparticle communities.

2. A lossless compression algorithm for digitalized data

The colossal volume of data generated by current and future physics experiment (not only in
astronomy) impose challenges not only in the data analysis but also in the transfer and storage of
these data. Increase in hardware sizes will not be sufficient to solve those challenges. However,
improvements in the data compression can help addressing them. The most efficient compres-
sion algorithms are generally used for picture (JPEG), video (H264), music (MP3) files, allowing
a compression ratio greater than 10. However these algorithms are lossy and cannot be used in
the case of physical data where data loss is not acceptable. Lossless compression is therefore un-
avoidable. Characters lossless compression, CTW (Context Tree Weighting) [5], Burrows-Wheeler
transform, LZ77 [7], LZW [6] or PPM [4], can not be used on physical data as they do not have the
same characteristics (like characters occurrence or characters repetition) as the textual ones.

The most commonly used methods for loss compression on binary data are the Lempel-Ziv-
Markov chain algorithm (LZMA)[1] developed by Lempel and Ziv (1996), LZ78 [8], BZIP [3],
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GZIP[2] or the Huffman algorithms. They provide good compression ratio (up to 4.8 on binary
data), however they are quite slow comparing to the data flow of the coming experiments.

Many experiments in physics acquire digitalized (12 bits for example) signals dominated by
white noise in unsigned integers. In many examples, the white noise can be represented by a
Gaussian distribution and often dominates the signal - generally a Poissonian distribution. In these
cases, most of the data is noise and follow a Gaussian distribution. In many cases, the range of
values b = vmax− vmin + 1 (with vmin the data minimum value and vmax the data maximal value)
covered by the data is much smaller than the range of values covered by an unsigned int d = 232. It
is therefore possible to store several data in the same unsigned int. By subtracting vmin to the data,
b becomes its basis. Once this basis and the data minimum value stored, the data can be stored as
contiguous basis blocks, with several blocks (at most d/b) in one unsigned int (see figure 1). The
complete presentation of the compression algorithm is done in another article (submitted). As an
example, an IACT simulation file such as the ones used in CTA (Simtel_array) of 1.2Go can be
compressed with a ratio of about 3.75 in only 3.7 seconds whereas the use of the LZMA algorithm
results in a compression ratio of 4.8 in more than 7 minutes.

unsigned int

Min Basis

unsigned int

MinMax

Reduced table

Range

Figure 1: Illustration of the reduction principle. The upper line represents the data (different colours for
different values). In the second line, the orange block represent the changes between the different values to
compress. The last line shows the compressed data (as they are stored). First, the minimum value of the
data, next, the basis b = max−min+ 1, and finally the data stored as contiguous blocks. The main idea is
to notice that several data can be stored in the same unsigned int and only the changes between the data are
stored. The common parameters like the range of the data (minimum and maximum or compression basis)
are stored only once.

3. Vectorization applied to Hillas parameters calculation

The typical image of an atmospheric shower by an IACT is can be approximated by an ellipse.
The Hillas parameters are the parameters that best describe this ellipse (namely the barycentre,
the first and second momentum of the signal) and can be computed analytically. Based on these
parameters computed for each camera image of the IACT network, a stereoscopic reconstruction
can give the direction and the energy of the primary photons. Improvement of the computing
performances has been realized through two axes: modification of the data format and vectorization
of the computation. By changing the data format from a root-based data format to an optimized data
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Reduction Speed cy/el Acceleration
C/C++ 2.69842 1

GCC, SSE4 0.72845 3.839281

Table 1: Speed and speed up for float reduction for basic C/C++ code and GCC vectorization on SSE4
architecture.

Interleaving Speed cy/el Acceleration
1 0.616841 4.374579
2 0.338947 7.961185
4 0.226990 11.887836
8 0.226675 11.904356

Table 2: Speed up for interleaved float accumulation on SSE4 architectures.

Interleaving Speed cy/el Acceleration
2 0.172954 15.601951
4 0.115568 23.349197
8 0.11379 23.714034

Table 3: Speed up for interleaved float accumulation on AVX architectures.

format with aligned data and allowing data prefetching to optimize the use of the CPU Cache-L1,
we observed a speed up in the computation of 40 (see table 5).

The main optimization consist into the reduction optimization. More generally, the vectoriza-
tion and optimization of a computation with back dependencies.

3.1 Reduction Optimization

The vector reduction is the basis of many algorithms. So, its optimization is crucial. Basically,
a reduction written in C/C++ has a speed of 2.69842cy/el, due to the architecture. The GCC
vectorization on SSE4 architecture gives a speed up of 3.8 (see table 1).

The GCC compiler can not have better performances because the CPU pipeline is not full due
to the reduction computation back dependency (the result of the previous addiction has to be known
to compute the current one).

The back dependency can be avoided by using several accumulator instead of one. This inter-
leaving able the CPU pipeline to compute a reduction part without needed the very previous result.
The number of used accumulator has to be fine-tuned for each CPU architecture (see SSE4 in table
2, and AVX in table 3).

3.2 A fast barycentre calculation

The barycentre computation can be optimized the same way as the reduction (see in section
3.1). But, in this case, the computation time over a single element is greater than a reduction
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momenta Architecture Speed cy/el
First 1D SSE4 0.457595

AVX 0.179133
First 2D SSE4 0.910941

AVX 0.343091
First and second 2D SSE4 1.29088

AVX 0.599513

Table 4: First and second momenta speed up example on SSE4 and AVX architecture.

because the computation is more complex (addiction and multiplication). So, less interleaving is
needed.

The table 4 shows the speed up obtained by managing the vectorization by hand on the
barycentre computation.

The vectorized reduction and barycentre calculation, are part of the open source PLIB_FAST
library bring another important speed up (greater than 8 for SSE4 architectures and greater than 16
for AVX architectures). This result brings a very important total speed-up (see table 5).

Speed (cy/el) Speed up
Initial Hillas 2125.5 1

Home-made data format 53.1375 40.0
Vectorized Hillas SSE4 6.39931 332.14516
Vectorized Hillas AVX 2.98499 712.06268

Table 5: Comparison between the different optimizations perform on the Hillas parameters calculation.

4. More complex analysis based on singular value decomposition

Template analysis consists in comparing observation data with simulated data in order to re-
trieve the primary physical conditions that generated the signal. This approach has proved to im-
prove physics performances. It is currently used for gravitational waves analysis [1] and for IACT
data analysis [2]. However, complete templates may represent a lot of simulated data to look into.
It requires consequent computing resources and time and for current and future experiments, may
be unachievable. Here we propose to combine this approach with a data reduction using Singu-
lar Value Decomposition (SVD). SVD is a mathematical solution to extract spectral values from a
rectangular matrix. SVD decomposition is a reversible process if the complete spectrum is kept.
However, a couple of values is often enough to characterise the essential physics information. In
this case, the treatment is much faster and template analysis can be used on the SVD spectrum.

Principle: SVD is applied to a set of images (simulated data) generating a singular value
spectrum for each of them. A label (including the physical parameters) is associated to this spec-
trum. The generated spectra form a dictionary to which a new unknown image spectrum will be
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compared. A likelihood can be computed to find the most probable templates and finally get the
corresponding label (see right figure).

Figure 2: SVD principle: a dictionary of singular value spectra (keys) is generated from images associated
to physical values (label). To analyse a new image, its spectrum is computed and compared to the bank of
spectra using a likelihood function to find the most probable label.

The template analysis aims at reconstructing the detected shower by precomputing IACT an-
swer with shower simulations and by comparing the real telescopes pictures to the simulated ones.
They have good physical results on IACT data, particularly on discrimination.

Unfortunately, this pixel per pixel pictures comparison is very slow. There are a lot of pixels in
the new IACT cameras and a single pixel comparison is time consuming. Moreover, the classical
template method are not scalable to the new IACT data volume and structure. The pixel per pixel
comparison must be replaced by a lighter method. The Singular Value Decomposition is one of
these methods.

The Singular Value Decomposition algorithm (SVD) generalized the Fourier transform on
matrices. The matrix SVD is :

M = UDV T (4.1)

Where M ∈ Mn,m (R), U ∈ On,m (R) (orthogonal matrices n×m), V ∈ Om (R), D ∈ Dm (R)
(diagonal matrix). The diagonal matrix D is also called singular value spectrum. This spectrum
condenses the matrix M information as the frequency spectrum in a Fourier transform.

Therefore, the singular value spectrum can be compared as the pixel per pixel comparison
to get the primary particle physical characteristics. This method used less data because only few
singular values (∼ 7) are relevant to describe the signal in the camera. This method is also scalable
compared to the classical IACT template analysis because all the camera pictures can be processed
at the same time.
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5. Conclusion

With the development of new science infrastructures generating unprecedented volumes of
data, new HPC approaches are necessary in order to manage and analysis scientific data. In this
work we present generic solutions including a new lossless compression algorithm for digitized
data, a HPC library providing low-level algorithms and a new approach for template analysis. These
developments have been tested and optimised for IACT data. They are available to download1 as
open-source algorithms and can therefore be used by the whole community.

We acknowledge support from the ASTERICS project supported by the European Commission
Framework Programme Horizon 2020. Research and Innovation action under grant agreement n.
653477
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