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Telescopes based on the imaging atmospheric Cherenkov technique (IACTs) detect images of the
atmospheric showers generated by gamma rays and cosmic rays as they are absorbed by the at-
mosphere. The much more frequent cosmic-ray events form the main background when looking
for gamma-ray sources, and therefore IACT sensitivity is significantly driven by the capability
to distinguish between these two types of events. Supervised learning algorithms, like random
forests and boosted decision trees, have been shown to effectively classify IACT events. In this
contribution we present results from exploratory work using deep learning as an event classifi-
cation method for the Cherenkov Telescope Array (CTA). CTA, conceived as an array of tens
of IACTs, is an international project for a next-generation ground-based gamma-ray observatory,
aiming to improve on the sensitivity of current-generation experiments by an order of magnitude
and provide energy coverage from 20 GeV to more than 300 TeV.
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1. Introduction
In this contribution we present an exploratory work on the application of deep learning meth-

ods to the problem of event classification for imaging atmospheric Cherenkov telescopes (IACTs).
IACTs are capable of imaging the particle showers created in the atmosphere by high energy
(& 10’s GeV) gamma rays. By focusing the Cherenkov photons emitted by the charged particles
in the shower onto a high-sensitivity camera, images of the showers can be obtained. However,
gamma-ray initiated showers are a minor fraction of the total number of observed atmospheric
showers, which is dominated by a background of cosmic ray-induced showers. The ability to dis-
criminate between gamma-ray events and cosmic-ray events is one of the major factors determining
the sensitivity of IACTs to astrophysical gamma-ray sources.

Gamma-ray initiated showers are driven by purely electromagnetic processes, while cosmic-
ray showers add hadronic processes to the former. This difference expresses itself in the morphol-
ogy of the imaged shower and can be exploited to discriminate between the two cases. Originally,
IACT images were parametrized in terms of their second moments [1], and event classification was
performed by applying box cuts in the corresponding parameter space. Current generation IACTs
have satisfactorily implemented classification schemes based on supervised learning algorithms
trained on a set of event-level parameters reconstructed from multiple telescope images, as is the
case of the random forest for the MAGIC telescope [2], and boosted decision trees (BDT) for the
VERITAS telescope [3] and the H.E.S.S. telescope [4, 5], which have substantially improved their
sensitivity.

Presently, deep convolutional neural networks (CNNs), also known as deep learning (DL), is
the leading approach to supervised representation learning, encompassing the problem of image
classification [6]. Due to its flexibility, versatility, and performance, DL has been applied to the
analysis of data from diverse scientific disciplines, including high energy physics (see, e.g., [7,8]).
Thus, it is natural to ask whether IACT image classification could benefit from this approach, and
efforts have begun to give an answer [9]. One of the main advantages of DL against previous
machine learning approaches to IACT image classification is that CNNs do not need the images to
be parametrized, and therefore have access to all the information contained in them, opening the
way to exploiting image features that might get lost or washed out during the parametrization.

In this work, we investigate DL as an event classification method for the future Cherenkov
Telescope Array1 (CTA, [10]). CTA is an international project aimed at constructing the next-
generation IACT observatory, with an order of magnitude greater sensitivity than current-generation
experiments. CTA will consist of two installations, one located in the Northern hemisphere (La
Palma, Spain) and another in the Southern hemisphere (Cerro Paranal, Chile), each one equipped
with an array of few tens of IACTs of different sizes optimized to different energy bands ranging
from 20 GeV to more than 300 TeV. For this work we use images from Monte Carlo simulated
events as detected by an array of 9.7-m-aperture Schwarzschild-Couder medium-sized telescopes
(SC-MST, [11]) to train several known DL architectures in the event discrimination task, leaving the
consideration of other telescope models to future works. Additionally, we focus on single-image
classification as opposed to event-level classification (using multiple images from a same event to
take advantage of stereoscopic information), which will be dealt with in subsequent works. Thus,

1www.cta-observatory.org
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this study serves as a proof of principle that CNNs are capable of classifying air shower images,
and the resulting single-image networks will serve as a useful first stage of the more complex
array-level networks we plan to later implement.

2. Deep learning
Deep convolutional neural networks (CNNs) operate fundamentally like traditional fully con-

nected networks, but with innovations including local receptive fields, shared weights, and pooling
that significantly reduce the parameter count and computational cost. A CNN consists of many lay-
ers, each containing a set of nodes. In the input layer, each node corresponds to one image pixel. In
the following convolutional layers, each node receives inputs from a small number of nodes in the
previous layer forming its local receptive field. These inputs are convolved with several "filters",
consisting of a grid of weights spanning the receptive field, to produce the activations. The filter
weights are shared across each layer’s nodes, a design choice that reflects the translational and ro-
tational invariance of many visual features. A nonlinear activation function such as rectified linear
unit is then applied to give the node output. We refer the reader to [12] for a concise overview of
DL and to [6] for a more detailed work on the subject.

In some architectures, convolutional layers alternate with pooling layers that combine infor-
mation from neighboring nodes to reduce the dimensionality of the feature maps and incorporate
information from wider areas of the original image [12]. This structure reflects the localized nature
of image features, dramatically reducing the needed weight parameters by ignoring dependencies
between distant pixels until later layers.

The last layer of a classifier outputs a prediction which is compared to the true label using
a loss function, such as binary cross-entropy for binary classification. The network learns using
backpropagation: gradients of the loss surface in high-dimensional weight space are calculated and
the weights updated in the direction that minimizes the loss using a variant of gradient descent.
Training is done in batches such that, for each epoch, the weights are updated based on the gradient
from one sample at a time, repeated until the network has seen the entire training set.

3. Application to CTA event images
We used the Monte Carlo simulation chain for CTA described in [13], where the atmospheric

showers are simulated with Corsika [14] and the telescope optics and camera readout are simu-
lated with Sim_telarray [15]. We simulated the response of an array of 8 SCTs to ∼ 5× 109

proton showers and ∼ 9× 108 gamma-ray showers, assuming an altitude and atmospheric profile
describing the conditions in the Roque de los Muchachos Observatory (La Palma, Spain), where
the Northern installation of the CTA Observatory will be located2. The SCT model, by design,
combines an excellent point spread function across a wide field of view with a camera featuring
the highest number of pixels among CTA telescopes. SCTs will potentially provide CTA with its
highest-resolution shower images, thus motivating the selection of SCT images for this study. In
addition, SCT gamma-ray cameras feature square pixels, as opposed to other types of CTA tele-
scope models whose cameras are composed of hexagonal pixels, avoiding the need of transforming
the hexagonal lattices into 2D arrays, the common input format for CNNs.

2The Northern site of the CTA Observatory is meant to be equipped with 15 medium-sized telescopes. The size of
our array is driven by technical limitations of our image converter software, to be addressed in the future.
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Figure 1: Some sample images from our data set, cor-
responding to independent events. Left image from a
gamma-ray initiated shower. Right: image from pro-
ton initiated shower. The images have been normal-
ized for better visualization.

The energy distribution of the initial
particles ranged from 3 GeV to 330 TeV
in the case of gamma rays and 4 GeV to
600 TeV in the case of protons. The arrival
direction of both particle types was homo-
geneously distributed inside a cone of 10◦

radius with axis co-linear with the point-
ing position of the telescopes. Two dif-
ferent pointing positions were chosen, shar-
ing a zenith angle of 20◦ and Azimuth an-
gle of 0◦ and 180◦, splitting the simulated
events evenly between the two. The output of
Sim_telarray consists of the collection
of digitized photodetector pulses, for each triggered telescope camera, on an event-by-event ba-
sis. We used the IACT analysis package Event Display to convert Sim_telarray files into
ROOT format. In order to convert the raw data in ROOT format into shower images we developed
the code ImageExtractor, based on ROOT and the OpenCV library. ImageExtractor per-
forms a simple pulse integration and stores the integrated pulse, in digital counts, into a 120x120
array representing the camera topology that is eventually saved into a 16-bit depth portable network
graphics (PNG) image. Relevant Monte Carlo parameters, including the particle type, particle en-
ergy, impact parameter, and triggered telescope number, are stored in the image header for further
reference.

Cut
Offset ≤ 3◦

−2 < MSCW < 2
−2 < MSCL < 5

EChi2S ≥ 0
ERecS > 0 TeV

0 km < Emission height < 50 km
dES ≥ 0 TeV

Table 1: Arrival direction and sanity cuts ap-
plied to all data. Only events passing all cuts
were used for training, validation, or testing.
The cut variables are: Offset between camera
center and MC arrival direction of the event;
MSCW (MSCL) is the event’s mean scaled width
(length); EChi2S is the χ2 its estimated vs.
reconstructed energy value; ERecS (Emission
height) is its reconstructed energy (emission
height); dES is the reconstructed energy error.

Several cuts were applied to the data before
training. For all events, the arrival direction of
the shower was constrained to offsets between 0◦

and 3◦ and the event telescope multiplicity was re-
quired to be ≥ 3. Sanity cuts were also applied on
several reconstructed event parameters (see Table
1). These cuts were chosen to match those in one
of the standard CTA analysis chains, Eventdis-
play, in particular to train the default BDT-based
image classification [3] and use the classification
performance achieved by the BDTs as a reference.
The data were separated into three energy bins
corresponding to low, medium, and high energies
(see Table 2). Training was performed separately
on each energy bin.

Within each bin, the data were randomly split
into training, validation, and test sets, comprising
80%, 10%, and 10% of each bin’s data. Only im-
ages in the training sets were used as inputs for

the CNN, while those in the validation sets were used to measure the network’s performance after
each epoch of training. The images in the test sets were reserved to obtain a final measure of the
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network’s accuracy after training was complete.
To instantiate our models, we used the high-level neural network library Keras [16] with

Theano [17] as the computational back-end. For this work we explored two well-known models,
ResNet50 [18] and Inception V3 [19], both available as applications within Keras. Inception V3,
by using batch normalization, optimization of layer dimensions, careful balancing of network width
and depth, and aggressive factorizations of the convolutional layers, is able to achieve state of the
art performance on the ILSVRC 2012 benchmark. ResNet50, developed in parallel to Inception
V3, takes a different approach by using residual mapping (implemented as "shortcut" connections
across convolutional layers) to more effectively train very deep networks. Using this approach,
networks of over 100 layers have been successfully trained to very high accuracies.

Energy Emin Emax Ngamma Nproton

bin [TeV] [TeV]
Total 4160578 4056723
Low 0.1 0.31 727316 228959
Medium 0.31 1 657397 119704
High 1 10 642034 72034

Table 2: Dataset used in this proceeding. All data
were simulated at a Zenith angle of 20◦ and at an Az-
imuth angle of either 0◦ or 180◦, split roughly evenly
between the two. Total statistics are prior to any cut.

We trained both architectures on our
dataset and compared their performance.
The networks were not initialized with any
pretrained weights. To adapt the networks
for CTA data, the input images were re-
sized to 240 x 240 arrays3 and the out-
put layer replaced with a binary classifier.
Training was conducted on two different
computing systems sharing identical datasets
and featuring similarly performing GPUs: a
NvidiaTM GeForce GTX TITAN X Pascal
and NvidiaTM GeForce GTX 1080 Ti. The
training time over the full dataset was of 12 hours per energy bin and per model, while the classifi-
cation of data is performed approximately three orders of magnitude faster.

4. Results
The maximum accuracy achievable by training a given network depends on the backpropa-

gation algorithm used. We surveyed a subset of optimizers directly available in Keras in order
to identify the best performing ones in terms of accuracy (fraction of images showing a classifier
score for its true category higher than 0.5, where the classifier range is 0 to 1). Tests were conducted
using stochastic gradient descent (SGD), RMSprop, Adam, Adadelta, and Nadam optimizers [20].
We trained ResNet50 and Inception V3 on a small subset of images (2×105 images per category),
for a duration of 10 epochs, to evaluate the model accuracy and loss as a function of the chosen
optimizer. We did not optimize the learning rates or any other hyperparameters of the different
optimizers, adopting the default values as provided in Keras. Our findings are shown in Fig. 2.
Our results show that the default hyperparameters work reasonably well for ResNet50 while most
optimizers are not well tuned for Inception V3. Adadelta provided the highest accuracies at epoch
10 for both models. Consequently, we adopted Adadelta as the optimizer for the training on the
full data set, allowing for a more direct comparison between performances.

After the selection of the optimizer, both ResNet50 and Inception V3 networks were trained
using the full training and validation sets for the three energy bins. We trained our models for 10

3For technical reasons, the networks have a minimum input width and length greater than 120, so the input size was
doubled in each dimension.
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Figure 2: Network accuracy (left) and loss (right) as a function of the training epoch, for ResNet50 and
InceptionV3 models. The training was performed on a subset of 2×105 images per category drawn from the
medium energy bin of the training dataset.
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Figure 3: Network training accuracy (right) and loss (left) as a function of the training epoch, for ResNet50
and InceptionV3 models and all three energy bins. For each model and energy bin both the training and
validation accuracy and loss are shown (upper plot), as well as the gap between the two (lower plot): training
curves are represented by thick lines, while validation accuracy curves are represented by thin lines. The
training was performed on our full data set, independently for each energy bin.
epochs, which appeared to be enough for a stabilization of the training accuracy without a drop in
the validation accuracy that might point out overtraining. A summary of the evolution of training
and validation accuracy as well as loss can be found in Fig. 3. We found that both models achieve a
very similar training accuracy at epoch 10, ResNet50 learning at a slightly faster pace than Inception
V3, with the latter providing with marginally higher validation accuracies in the low (0.3%) and
high (0.4%) energy ranges, while tying in the medium energy range. As expected, higher energies
provide with higher accuracies, since the images tend to be larger and brighter (more information),
thus allowing for a more effective training. A summary of the highest validation accuracies per
training can be found in Table 3.

We generated receiver operating characteristic (ROC) curves for all scenarios by passing the
corresponding test subsets to the trained models showing the highest validation accuracies. The
collection of all ROC curves can be found in Fig. 4. It can be seen that, for the low and medium en-
ergies, both models are performing almost equally. For the highest energies there seems to be some
distance between InceptionV3 and ResNet50 that we suspect may be originated by a higher suscep-
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tibility of the former to the relatively low image statistics present in the proton subsample, which is
hinted in the behavior of the validation and loss for the validation sample in Fig. 3. Similarly found
in the behavior of the BDTs, the InceptionV3 ROC curves for medium and high energies are close
together, although we suspect that the discrimination power of CNNs in the highest energy range
may increase if a larger sample of proton images is used for the training of the CNNs. While the
ROC curves from the tested CNN architectures are significantly below the corresponding ones for
the BDT-based classification method, one must bear in mind that the latter draws its power from
a multi-image event stereo reconstruction, whereas our models are trained on individual images
(coming from events that survive the above mentioned cuts but lacking any additional stereo in-
formation). Thus, the BDT ROC curve should be seen as a reference, a target to overtake in the
future.

5. Conclusion and outlook

Model Low E. Med. E. High E.
ResNet50 81.1% 90.1% 91.2%
Inception V3 81.4% 90.1% 91.6%

Table 3: Highest classification accuracy on the vali-
dation data set for ResNet50 and Inception V3 models
for all energy bins.

We have demonstrated that DL is capa-
ble of classifying simulated IACT images,
here represented by SCT images, without
any prior parametrization nor any assump-
tion on the nature of the images themselves.
The accuracy of the tested models is energy
dependent, ranging from 81.4% in the low
energy range to 91.6% in the high energy
range for the Inception V3 architecture.
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Figure 4: ROC curves from test data classified with
ResNet50 and Inception V3 for the low, medium, and
high energy bins. As a reference we show the ROC
curves corresponding to BDT trained on the same data
set (events parametrized using stereo information).

After applying CNNs to gamma-hadron
separation on single-telescope images, the
next step is to apply these techniques to
array-level classification. IACT array anal-
ysis methods rely on combining information
from multiple telescopes to achieve high-
quality stereo shower reconstruction, per-
form background discrimination, and calcu-
late reconstructed parameters. Going for-
ward, the focus of our efforts will be on de-
veloping multi-input architectures consisting
of separate CNNs for each telescope, which
will then combine information through a
fully-connected classifier to achieve more ef-
fective gamma-hadron separation on the ar-
ray level. Eventually, we will assess the
benefits of DL as compared to the current
standard analysis on the instrument response
functions.

We also plan to further investigate different architectures, gradient descent algorithms, and
other hyper-parameters, narrowing down on the choice that provides optimal results. It may be
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possible to achieve superior results by customizing networks for the specific task of Cherenkov
image classification.

Other promising applications for CNNs to IACT data analysis include using similar methods
to those presented here to do energy and angular reconstruction and performing more difficult
background discrimination tasks such as gamma/electron separation or cosmic-ray composition
studies.
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