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MAGIC, a system of two imaging atmospheric Cherenkov telescopes, achieves its best perfor-
mance under dark conditions, i.e. in absence of moonlight or twilight. Since operating the tele-
scopes only during dark time would severely limit the duty cycle, observations are also performed
when the Moon is present in the sky. Here we present a dedicated Moon-adapted analysis and
characterize the performance of MAGIC under moonlight. We evaluate energy threshold, angu-
lar resolution and sensitivity of MAGIC under different background light levels, based on Crab
Nebula observations and tuned Monte Carlo simulations. This study includes observations taken
under non-standard hardware configurations, such as reducing the camera photomultiplier tubes
gain by a factor ∼1.7 (reduced HV settings) with respect to standard settings (nominal HV) or
using UV-pass filters to strongly reduce the amount of moonlight reaching the telescopes cam-
eras. The Crab Nebula spectrum is correctly reconstructed in all the studied illumination levels,
that reach up to 30 times brighter than under dark conditions. The main effect of moonlight is an
increase in the analysis energy threshold and in the systematic uncertainties on the flux normal-
ization. The sensitivity degradation is constrained to be below 10%, within 15-30% and between
60 and 80% for nominal HV, reduced HV and UV-pass filter observations, respectively. No wors-
ening of the angular resolution was found. Thanks to observations during moonlight, the duty
cycle can be doubled, suppressing the need to stop observations around full Moon.

35th International Cosmic Ray Conference – ICRC2017-
10-20 July, 2017
Bexco, Busan, Korea

∗Speaker.
†We would like to thank the IAC for the excellent working conditions at the ORM in La Palma. We acknowledge

the financial support of the German BMBF, DFG and MPG, the Italian INFN and INAF, the Swiss National Fund SNF,
the European ERDF, the Spanish MINECO, the Japanese JSPS and MEXT, the Croatian CSF, and the Polish MNiSzW.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:dguberman@ifae.es


P
o
S
(
I
C
R
C
2
0
1
7
)
8
2
3

Performance of the MAGIC telescopes under moonlight D. Guberman

1. Introduction

The Imaging Atmospheric Cherenkov Technique (IACT) uses one or several optical telescopes
to image the air showers induced by cosmic γ rays in the atmosphere. IACT telescope arrays usu-
ally achieve their best performance in the absence of moonlight. Their cameras are generally
equipped with photomultiplier tubes, that can age (gain degradation with time) quickly in a too
bright environment. As a result, observations are restricted to relatively dark conditions. When
IACT instruments operate only during moonless astronomical nights, their duty cycle is limited to
18% (∼1500 h/year), without including the observation time loss due to bad weather or technical
issues. Every month around the full Moon, the observations are generally fully stopped for sev-
eral nights in a row. Operating IACT telescopes during moonlight and twilight time would allow
increasing the duty cycle up to ∼40%.

MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov telescopes) consists of two
17 m diameter IACT telescopes designed to observe very high energy (VHE, & 50 GeV) γ-
rays[1].The cameras of the MAGIC telescopes were designed from the beginning to allow observa-
tions during moderate moonlight [3, 4]. This is achieved by operating the PMTs at a relatively low
gain, typically of 3-4 ×104. The use of reduced HV [5] and UV-pass filters [6] were introduced
later to extend the observations to all the possible Night Sky Background (NSB) levels, up to few
degrees from a full Moon.

IACT observations under moonlight are becoming more and more standard, and are routinely
performed with the MAGIC and VERITAS[2] telescopes. The performance of VERITAS under
moonlight with different hardware settings at a given NSB level has been recently reported [7].
Here we present an overview of the results reported in [8]: a more complete study on how the
performance of an IACT instrument is affected by moonlight and how it degrades as a function of
the NSB. Our study is based on extensive observations of the Crab Nebula, adapted data reduction
and tuned Monte Carlo (MC) simulations. The observations, carried out from October 2013 to
March 2016 by MAGIC with nominal HV, reduced HV and UV-pass filters, cover the full range of
NSB levels that are typically encountered during moonlight nights.

2. The MAGIC telescopes under moonlight

Each camera of the MAGIC telescopes consist of 1039 6-dynode PMTs. The aging of PMTs
is determined by the amount of charge that hits the last dynode (anode). The higher the intensity of
the light they are exposed to, the higher the collected charge. To avoid fast aging, observations us-
ing the standard HV settings (nominal HV) are possible up to a brightness of about 12×NSBDark

1.
Observations can be extended up to about 20×NSBDark by reducing the gain of the PMTs by a fac-
tor ∼1.7 (reduced HV settings). When the HV is reduced there is less amplification in the dynodes
and so fewer electrons hit the anode. However, the PMT gains cannot be reduced by an arbitrary
large factor because the performance would significantly degrade, resulting in lower collection ef-

1NSBDark is defined in [8] as the brightness of the fraction of the sky seen by MAGIC when pointing the telescopes
towards the Crab Nebula at low zenith angle during astronomical night, with no Moon in the sky or near the horizon,
and good weather conditions.
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Sky Brightness Hardware Settings Time Pedestal Distr Cleaning Level factors Size Cut
mean / rms Lvl1 / Lvl2

[NSBDark] h [phe] [phe] [phe]

1 (Dark) nominal HV 53.5 2.0 / 1.0 6.0 / 3.5 50
1-2 nominal HV 18.9 2.5 / 1.2 6.0 / 3.5 60
2-3 nominal HV 13.2 3.0 / 1.3 7.0 / 4.5 80
3-5 nominal HV 17.0 3.6 / 1.5 8.0 / 5.0 110
5-8 nominal HV 9.8 4.2 / 1.7 9.0 / 5.5 150
5-8 reduced HV 10.8 4.8 / 2.0 11.0 / 7.0 135
8-12 reduced HV 13.3 5.8 / 2.3 13.0 / 8.0 170
12-18 reduced HV 19.4 6.6 / 2.6 14.0 / 9.0 220
8-15 UV-pass filters 9.5 3.7 / 1.6 8.0 / 5.0 100
15-30 UV-pass filters 8.3 4.3 / 1.8 9.0 / 5.5 135

Table 1: Effective observation time and noise level of the Crab Nebula subsamples in each of the
NSB/hardware bins. The adapted image cleaning levels and size cuts used for their analysis are also shown.

ficiency, slower time response, larger pulse-to-pulse gain fluctuations and an intrinsically worse
signal-to-noise ratio [8, 9].

Even when operating the telescopes with reduced HV, observations are severely limited or
cannot be performed if the Moon phase is above 90%. Observations can, however, be extended up
to about 100×NSBDark with the use of UV-pass filters. This limit is achievable if the filters are
installed and at the same time PMTs are operated with reduced HV. This is done only in extreme
situations (>50×NSBDark). All the UV-pass filter data included in this work were taken with
nominal PMT gain. In practice, observations can be performed in conditions that are safe for the
PMTs as close as a few degrees away from a full Moon. The telescopes can be pointed almost at any
position in the sky, regardless the Moon phase, and, as a result, they can be operated continuously
without full Moon breaks.

3. Data analysis

The performance of MAGIC under moonlight was characterized using 174 hours of Crab
Nebula observations taken between October 2013 and January 2016, under NSB conditions going
from 1 (dark) up to 30× NSBDark

2. Data taken correspond to zenith angles ranging between 5◦

and 50◦ and were divided into different samples according to their NSB level and the hardware
settings in which observations were performed (nominal HV, reduced HV or UV-pass filters), as
summarized in Table 1.

The data have been analyzed using the standard MAGIC Analysis and Reconstruction Soft-
ware (MARS, [10]) following the standard analysis chain described in [11], besides some addi-
tional modifications that were implemented to account for the different observation conditions.

2Observations are possible at higher illumination levels, but it is hard to get Crab data under such occasions. In fact,
only on rare situations MAGIC targets are found under higher NSB levels than the ones analyzed in this work.
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These modifications can be summarized into a set of dedicated image cleaning levels, Monte Carlo
(MC) simulations and size cuts.

The image cleaning is performed right after the data calibration to remove those pixels that
contain only noise. During moonlight observations the background fluctuations are higher and
the cleaning levels must be increased accordingly. Those levels were modified to ensure that the
fraction of pedestal events that contain only noise and survive the image cleaning is lower than
10% and optimized to get the lowest possible analysis threshold for every bin. For more details
about how image cleaning works in MAGIC refer to [11]. The optimized cleaning levels for each
bin are shown in Table 1.

MC simulations have mainly two functions in the MAGIC data analysis chain. A first sample
(train sample) is used to build look-up tables and multivariate decision trees (random forest), which
are employed for the energy and direction reconstruction and gamma/hadron separation. A second,
independent sample (test sample) is used for the telescope response estimation during the source
flux/spectrum reconstruction.

We prepared MC samples adapted for every NSB/hardware bin. For nominal and reduced HV
settings, we used the standard MAGIC MC simulation chain with additional noise to mimic the
effect of moonlight (and reduced HV). In the case of the UV-pass filter observations, additional
modifications on the simulation chain were implemented to include the filter transmission and the
shadowing produced by the frame ribs.

As MC simulations were not produced from the trigger level, they do not reproduce by them-
selves the effect of moonlight on the trigger (see section 3.10 in [1] and section 2.1 in [8] for details
on the MAGIC trigger system). Instead, we applied cuts on the sum of charge of pixels surviving
the image cleaning (image size) on each telescope. This size cut acts as a software threshold and
it is optimized bin-wise as the minimal size for which the data and MC distributions are matching.
The used size cuts are given Table 1.

4. Performance

Energy threshold

The energy threshold of IACT telescopes is commonly defined as the peak of the differential
event rate distribution as a function of energy. It is estimated from the effective collection area as
a function of the energy, obtained from γ-ray MC simulations, multiplied by the expected γ-ray
spectrum, which is typically (and also in this work) assumed to be a power-law with a spectral
index of −2.6. Left panel in figure 1 shows four examples of such event rate distributions.

The energy threshold can be evaluated at different stages of the analysis. The lowest threshold
corresponds to the trigger level, which reaches ∼ 50 GeV during MAGIC observations in moonless
nights at zenith angles below 30◦ [11]. Here we evaluate the energy threshold after image cleaning
and size cuts are applied, for which a good matching between real data and MC is achieved. At this
level, the previously quoted energy threshold rises to ∼ 70 GeV.

We produced differential rate plots for each NSB/hardware bin and estimated the energy
threshold by fitting a Gaussian distribution in a narrow range around the peak of these distribu-
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Figure 1: Left: Rate of MC γ-ray events at the reconstruction level for an hypothetical source with an
spectral index of −2.6 observed at zenith angles below 30◦. Dashed lines show the gaussian fit applied to
calculate the energy threshold on each sample. NSB levels are given in units of NSBDark Right: Energy
threshold as a function of the sky brightness. The degradation of the energy threshold Eth as a function
of the NSB level can be roughly approximated, for nominal HV and reduced HV, by Eth(NSB) = EDark

th ×
(NSB/NSBDark)

0.4, where EDark
th is the energy threshold during dark Crab Nebula observations.

tions3. Right panel in figure 1 shows the obtained energy threshold as a function of the sky bright-
ness for different hardware configurations at low (< 30◦) and medium (30◦−45◦) zenith angles.

Reconstruction of the Crab Nebula spectrum

The reconstructed Crab Nebula spectra obtained after applying the dedicated Moon analysis to
each data set are shown in figure 2. In almost all the cases the fluxes obtained are consistent within
±20% with the one obtained under dark conditions, at least up to 4 TeV. The only exception is the
brightest NSB bin (UV-pass filters data up to 30 ×NSBDark) where the ratio of the flux to the dark
flux gets slightly above ∼30% at energies between about 400 and 800 GeV.

Sensitivity

Following the method described in [11], we evaluated the integral sensitivity as a function of
the energy threshold for each NSB/hardware bin4. The obtained sensitivity curves are shown in fig-
ure 3. To accumulate enough data in every NSB/hardware bin, we use data from a large zenith angle
range going from 5◦ to 45◦. As the sensitivity and energy threshold depend strongly on the zenith
angle and data sub-samples have different zenith angle distributions, the performances are corrected
to correspond to the same reference zenith-angle distribution (average of all the data). To visualize

3Note that in those distributions the peak is broad, which means that it is possible to obtain scientific results with
the telescopes below the defined threshold.

4The sensitivity is defined as the integral flux above an energy threshold giving Nexcess/
√

Nbgd = 5, where Nexcess

is the number of excess events and Nbgd the number of background events, with additional constraints: Nexcess > 10 and
Nexcess > 0.05Nbgd .
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Figure 2: Spectral energy distribution of the Crab Nebula obtained for different NSB levels (given in units
of NSBDark, coloured dots) for nominal HV (top, left), reduced HV (top, right) and UV-pass filters (bottom,
left) data. The results obtained with the dark sample using standard analysis in this work (black dots) and
previously published by MAGIC (red solid line, [11]) are shown in every panel. The bottom sub-panels
show the ratio of the fluxes measured under moonlight to the flux measured under dark conditions.

the degradation caused by moonlight, the integral sensitivity computed for each NSB/hardware bin
is divided by the one obtained under dark conditions at the same analysis-level energy threshold.
The sensitivity degradation for nominal HV is constrained to be less than 10% below 1 TeV and all
the curves are compatible within error bars above ∼300 GeV. The only visible degradation is near
the reconstruction-level energy threshold (<200 GeV), where the sensitivity is 5-10% worse. For
Moon data taken with reduced HV, the sensitivity degradation lies between 15% and 30%. This
degradation is caused by a combination of a higher extracted-signal noise (see section 3 in [8])
and a smaller effective area. The degradation is even clearer in the UV-pass filter data, where the
sensitivity is 60-80% worse than the standard one. Such a degradation is expected, especially due
to the fact that the filters reject more than 50% of the Cherenkov light. Besides, sensitivity could
also be affected by a poorer reconstruction of the images, especially in the pixels that are partially
obscured by the filter frame ribs. At the highest energies (>2 TeV) sensitivity seems to improve.
This could be expected for bright images, that are less affected by noise, but higher statistics at
those energies would be needed to derive further conclusions.
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Systematic uncertainties

A study on the effect of the moonlight in the systematic uncertainties is performed in [8]. To
summarize, those errors depend on the hardware configuration and the NSB level. For moderate
moonlight (NSB < 8× NSBDark) observations with nominal HV, the additional systematic errors on
the flux is below 10%, raising the flux-normalization uncertainty (at a few hundred GeV) from 11%
[11] to 15%. For observations with reduced HV (NSB < 18× NSBDark) the additional systematic
errors on the flux is ∼15%, corresponding to a full flux-normalization uncertainty of 19% after a
quadratic addition. For UV-pass filter observations, the flux-normalization uncertainty increases
to 30%. The additional systematic on the reconstructed spectral index is negligible (±0.04) and
the overall uncertainty is still ±0.15 for all hardware/NSB configurations. The uncertainty of the
energy scale is not affected by the moonlight. It may increase for reduced HV and UV-pass filter
observations but this effect is included in the flux-normalization uncertainty increase No additional
systematic uncertainties have been found concerning the pointing accuracy.

Concerning day-to-day systematic errors, the additional uncertainties due to moonlight for
observations with nominal HV (NSB < 8× NSBDark) are marginal and the overall day-to-day sys-
tematic errors are consistent with the 11% in [11]. For brighter moonlight that requires hardware
modifications, the systematic errors get larger. The overall day-to-day systematic is estimated at
(15.4± 3.2)% for reduced HV and (13.2± 3.4)% for UV-pass filters, corresponding to an addi-
tional systematic on top of the dark nominal HV systematic errors laying between 6% and 18%.
For every hardware configuration, the additional day-to-day systematic errors is of the same order,
or below, the systematic errors found for the overall flux.

5. Conclusions

For the first time the performance under moonlight of an IACT system is studied in detail with
an analysis dedicated for such observations, including moonlight-adapted MC simulations. This
study, presented in detail in [8], includes data taken with three different hardware settings: nominal
HV, reduced HV and UV-pass filters.

During moonlight, the additional noise results in a higher energy threshold increasing with
the NSB level, which for zenith angles below 30◦ goes from ∼70 GeV (at the reconstruction level)
under dark conditions up to ∼300 GeV in the brightest scenario studied (15-30 ×NSBDark). With
a dedicated moonlight-adapted analysis, we are able to reconstruct the Crab Nebula spectrum in
all the NSB/hardware bins considered. The flux obtained is compatible within 10%, 15% and
30% with the one obtained under dark conditions for nominal HV, reduced HV and UV-pass filter
observations, respectively.

An eventual degradation in the sensitivity is constrained to be below 10% while observing with
nominal HV under illumination levels < 8× NSBDark. The sensitivity degrades by 15 to 30% when
observing with reduced HV and by 60 to 80% when observing with UV-pass filters. No significant
worsening on the angular resolution above 300 GeV was observed.

The main benefit of operating the telescopes under moonlight is that duty cycle can be dou-
bled, suppressing as well the need to stop observations around full Moon. The present study shows
that, except for the energy threshold, the performance of IACT arrays is only moderately affected
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Figure 3: Ratio of the integral sensitivity under moonlight to the dark sensitivity as a function of the analysis
energy threshold. The NSB levels are given in unit of NSBDark

by moonlight. Hardware modifications to tolerate a strong sky brightness (reduced HV, UV-pass
filters) seem to have more effect than the noise increase. The use of robust photodetectors, e.g. sil-
icon photomultipliers, in the future should improve the performance under these bright conditions.
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