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The Gamma-ray Cherenkov Telescope (GCT) is an innovative dual-mirror solution proposed for 

the Small-Size-Telescopes of the future Cherenkov Telescope Array (CTA), capable of imaging 

the showers induced by cosmic gamma-rays with energies from a few TeV up to 300 TeV. The 

Schwarzschild-Couder design on which the telescope optical design is based makes possible the 

construction of a fast telescope (primary mirror diameter 4 m, focal length 2.3 m) with a plate 

scale well matched to compact photosensors, such as multi-anode or silicon photomultipliers 

(MAPMs and SiPMs, respectively) for the camera. The prototype GCT on Meudon’s site of the 

Observatoire de Paris saw first Cherenkov light from air showers in November 2015, using an 

MAPM-based camera. In this contribution, we firstly report on the prototype GCT telescope’s 

performance during its assessment phase. Secondly, we present the telescope configuration 

during a campaign of observations held in spring 2017. Finally, we describe studies of the 

telescope structure, such as the pointing and tracking performance. 
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1. Introduction 

The Cherenkov Telescope Array (CTA) [1] is the next major international instrument in 

very-high energy astrophysics (20 GeV-300 TeV), providing a sensitivity of one order of 

magnitude better than present instruments as well as a significant improvements in angular 

resolution. Given the wide energy range to be covered, three different size classes of Imaging 

Air Cherenkov Telescopes (IACTs) designed for different energy ranges are therefore proposed 

and will be located in both the Northern and the Southern hemispheres to observe the whole sky. 

Among them, the Small Size class of Telescopes (SSTs) is devoted to the highest energy region 

from a few Tev to 300 TeV. About 70 of these telescopes are foreseen in the southern array to be 

constructed in northern Chile, between ESO’s Paranal and Cerro Armazones sites [2].  

The Gamma-ray Cherenkov Telescope (GCT) is one of three proposed solutions for the 

SSTs. Designed and built by an Australian-Dutch-French-German-Japanese-UK-US consortium, 

the GCT uses an innovative dual-mirror Schwarzschild-Couder (SC) optical design [3] in order 

to increase the field of view (FoV) while reducing the required camera size. The GCT prototype 

telescope structure has been installed at the Meudon site of the Observatoire de Paris in France 

and has been operated since November 2015. Two prototype cameras are under development for 

GCT: one using Multi-Anode Photomultiplier Tubes (MAPMTs) known as CHEC-M, and a 

second one using Silicon Photomultiplier Tubes (SiPMTs) known as CHEC-S [4]. One year and 

a half after recording CTA’s first ever Cherenkov light, CHEC-M was shipped back to Meudon 

for a commissioning and observing campaign. 

In the following, the GCT prototype telescope performance as well as the latest campaign 

of observation in Meudon are briefly described. A further section focuses on the developments 

made in terms of design validation or integration during this last year from the project status 

reported in Dournaux et al. [5]. 

2. Telescope structure overview 

Design studies of the mechanical structure started in 2011 at the Observatoire de Paris in 

France and have been led with a desire (i) to provide a mechanical structure as simple and as 

light as possible, (ii) to ease the mounting and maintenance phase and (iii) to decrease 

manufacturing costs by using commercial-of-the-shelf (COTS) modules and similar systems in 

the telescope. The integration of the mechanical structure from pre-assembled and pre-set 

subsystems was held on the Meudon site of the Observatoire de Paris in 2015. The majority of 

the structural frame is made of standard steel E355. The telescope structure itself is comprised 

of four main subsystems [6, 7] listed hereafter: 

 The tower. It is a COTS tube equipped with two flanges. It provides a mechanical 

interface between the telescope and the foundation and also supports the mass of the 

telescope. 

 The alt-azimuthal mechanical structure (AAS). The GCT is equipped with an alt-

azimuth mount. The AAS is a simple and modular structure, which consists of the 

fork, the drive systems and the bosshead. The designs of the AAS drives for the 

elevation and azimuth axes are similar and are made up of one slew bearing with an 

encoder and a motor shaft formed of one worm gear with two motors and encoders. 
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 The optical support structure (OSS) and the counterweight (CW). The OSS consists of 

the mast (COTS tubes), the dish of the primary mirror (M1), the top dish that supports 

the secondary mirror (M2), the bottom dish that links the OSS to the bosshead, and the 

camera removal system. 

 The optical elements. The GCT is equipped with two aspherical concave mirrors: M1 

and M2. Lightweight aluminium mirrors are used for the GCT prototype [8]. The M1 

mirror is tessellated and made of six petals. Only two petals are currently in place on the 

prototype, the other four are dummies with a similar surface area and mass to those of 

the real petals. The secondary mirror is monolithic. The camera is developed by the 

CHEC consortium [4]. 

The complete and assembled structure equipped with the CHEC-M camera is shown in 

Fig. 1. The final design of the telescope has a total mass of about 8 tons. 
 

 

Figure 1: The GCT prototype equipped with its camera (CHEC-M) in March 2017. 

The Telescope Control System’s (TCS) main purpose is to drive the telescope’s axes for 

tracking and pointing [5, 9]. To achieve this, three embedded cabinets connected to a power 

supply and network (Internet and fieldbus) are implemented on the telescope. The hardware for 

slow-control and safety systems are COTS modules from Beckhoff. To control the motion of the 

prototype, the TCS software is distributed between the hardware (drives and motors provided by 

ETEL) on board the telescope and the workstation of the control room (see Fig. 2).  

To achieve pointing, the equatorial coordinates of a source have to be converted into 

altitude-azimuth – or horizontal – coordinates, taking into account the observatory location and 

the date and time. For tracking, the conversions have to be computed for real-time operation to 

allow accurate scientific observations. The pointing and tracking software (written in C/C++) 

were integrated in early 2017 in the prototype embedded PC, in accordance with the smart 

telescope design philosophy. The SOFA library, referenced by the International Astronomical 

Union, is used for astronomic calculations in compliance with the CTA recommendations.  
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Figure 2: An overview of both the software and the communication layout of the TCS. There are only two 

physical links between the telescope and the control room for communication purposes. An EtherCAT 

fieldbus is used for safety and local automation. The logical connectivity is managed by OPC-UA clients 

and servers. The network devices, such as switches, are not shown.  

 

Following the Design Verification Document and the conformity matrix, 246 GCT 

technical specifications were defined in order to verify that the prototype meets the CTA 

requirements. Each specification has to be checked by one or more verification methodologies: 

analysis, certification, demonstration, inspection and testing [5].  

 

The GCT prototype has therefore undergone intensive analyses and testing in 2016 and 

2017 and no technological barrier or specific risks has been identified. A laser placed at 75 m 

from the telescope has been used, as detailed in [8], to align the M1 petal equipped with manual 

actuators. To optimise the pointing precision, an ATIK monochromatic camera has been 

installed at the focal surface in place of the scientific camera (in a CHEC-S dummy housing 

reproducing the actual weight and inertia of the scientific camera) to collect enough pointing 

data of stars in order to obtain a good model of the telescope geometry. 

 

The most constraining tests concern the movement of the telescope and specifically, the 

maximum possible speed, the efficiency of the system and the emergency stop. Quantitative 

measurements of the motion characteristics of the azimuth and the elevation axes have been 

performed and are summarized in Table 1. To date, about 80 % of the specifications have been 

processed and passed.  
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Designation Specification Test Result 

Azimuth range 510 ° 523.8 ° 

Elevation range (tracking range)  91 ° (89.2 °) 90.7 ° (89.6 °) 

Max azimuth pointing speed 5 °/s 6.0 °/s 

Max elevation pointing speed 2 °/s 2.2 °/s 

Max azimuth tracking speed 0.3 °/s 0.38 °/s 

Max elevation tracking speed 0.0039 °/s 0.0039 °/s 

Lifetime of the mechanical structure 30 years 42.4 years 

Emergency stop button action < 1 s < 1 s 

Table 1: Summary of mechanical and drives performances compared to the CTA specifications for SSTs. 
 

3. Observing campaign of spring 2017 

The main goals of the campaign were end-to-end tests of the safety and operation 

procedures for the camera and telescope. For the first time, both camera and telescope 

prototypes were operated remotely and in concert from the nearby control room in a reliable 

manner (the telescope's remote and embedded PCs and the camera control PC all being 

accurately synchronized with the Network Time Protocol server of the Observatoire de Paris). 

This included monitoring of all housekeeping data, visual checks using a webcam, drives 

temperatures, telescope position, power consumption, weather conditions, etc. It was also the 

first test of the camera’s improved safety and control system.  

The safety of the operating personnel was ensured thanks to hazard warnings on and 

around the telescope site, as well as an audible warning sounding when the telescope is slewing. 

All Observatory campaign participants were trained to act as telescope operators during 

observing nights and a "Telescope Operator User Manual & Safety rules" for the prototype was 

issued.  

During the observing campaign, the GCT camera acquired thousands of events that are 

being analysed. Two examples of on-sky images are shown in Fig. 3 (right), for details on the 

image analysis please refer to the proceedings by R. White and H. Schoorlemmer [4] as well as 

H. Sol et al. [10] for the CTA GCT Project in this issue. 
 

  
Figure 3: On the left, safety brief during the observing campaign (03/2017). On the right, a selection of 

two Cherenkov shower events detected by CHEC-M on the GCT prototype in Meudon. The calibrated 

image intensity in pe is shown for each camera pixel.  
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4. Performance 

4.1 Mirrors quality 

The GCT prototype mirrors conformity to CTA requirements was confirmed by a 

measurement campaign using an X-rite spectrophotometer (bandwidth considered: 400 to 

550 nm) in accordance with the studies reported in [8]. These results are presented in Table 2. 
 

Mirrors Total reflectivity Scattered component 

M1 89 % (+/- 0.5 %) 7.7 % (+/- 2 %) 

M2 87 % (+/- 1 %) 10.3 % (+/- 1.5 %) 

Table 2: Mean values of the reflectivity of the GCT prototype metallic mirrors. 

4.2 Drive performance 

Concerning the drive’s power 

consumption, Fig. 4 shows the 

apparent power measured at the 

main power supply when the 

azimuth axis is in motion at different 

velocities with all other subsystems 

switched off. The mean apparent 

power required for azimuth slewing 

is 200 VA with a peak at about 230 

VA (see [10] for figure). This test 

result confirms that the technical 

choices made for the AAS drives 

fulfil easily the current CTA 

specification (maximum power 

available in the CTA power grid is 

about 10 kW). 
 

4.3 Tracking performance 

We show the pre-calibration results in Table 3 of the tracking error between the 

commanded trajectory and the telescope position (alt-azimuthal) read by the axes absolute angle 

encoders fitted in the slew bearings during a half-an-hour tracking. The small tracking errors 

before any optimisation of the pointing are very encouraging.  
 

 Azimuth trajectory (°) Elevation trajectory (°) 

Maximum discrepancy -0.066 -0.014 

Mean discrepancy -0.063 -0.013 

Standard deviation 0.001 0.001 

Table 3: Maximum, mean and standard deviation in degrees of the discrepancies observed between the 

commanded trajectory and the telescope trajectory during a 30-minute tracking (before optimisation of 

the pointing accuracy). 

Figure 4: Maximum required apparent power and power 

factor versus velocity of the azimuth axis in standard 

observing conditions. 
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Figure 5 shows the recorded 

velocity of the azimuth axis while 

tracking at a high elevation 

pointing, near the zenith; this is 

where the constraints are the 

highest. The goal was to achieve a 

tracking at 89.2 ° in elevation, 

which results in a velocity of the 

azimuth axis of 0.27 °/s at 24° of 

latitude where the CTA southern 

site stands.  

 

 

 

 

4.4 Pointing performance 

To enhance the pointing accuracy of the GCT prototype in any direction, many technical 

pointing runs were taken to gather data. We have recorded the position of the telescope along 

with the environmental conditions, while recording images of stars in the telescope FoV.  

In order to take into account the pointing error due to the telescope geometry in the 

calculation of the alt-azimuthal coordinates, we have built a preliminary pointing model of the 

telescope using P. Wallace’s TPOINT software [11]. In this preliminary model, we have 

considered only 7 parameters, i.e. AN, AW, IA, NPAE, IE, CA and TF. 

The theoretical result is presented in Fig. 6: with a simple model and 30 samples, we 

achieve a factor of 20 improvement in the pointing precision of the telescope. This first result 

confirms that the telescope has a very good behaviour over the sky and that the theoretical 

pointing precision before applying any predictive model for the deformations due to gravity and 

wind, and before improvement using real time monitoring devices, exceeds expectations 

considering the CTA requirements (210 ” in ideal observing conditions and 600 ” in standard 

conditions). Henceforth, the telescope model needs to be refined by gathering more data with 

various observing environmental conditions. 

 

Figure 6: On the left, the “scatter diagram” of the observed source image position on the CCD camera, 

before (blue) and after (orange) applying the first pointing model of the telescope. On the right, zoom in 

on the left diagram. The dotted circles stand for the mean values of each series. 

Figure 5: Testing drive performance: velocity of the azimuth 

axis while tracking near the zenith. The required tracking 

velocity of the azimuth axis of 0.27 °/s is surpassed.  
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5. Conclusion and perspectives 

The assessment phase of the GCT prototype is now coming to an end. The immediate next 

steps for the GCT telescope team will be the implementation of motorised actuators to optimise 

the optics alignment and conclude on its optical parameters. CHEC-M will remain in Paris, 

where the Observatory staff supported remotely by the camera team, will carry out routine 

operation. The focus will be on understanding the stability and the reliability of the systems.  

Work is now in progress to update the detailed design plans for GCT-01, the first GCT 

telescope to be built in pre-production for the southern array of CTA, based on the knowledge 

and the expertise gained during the prototyping and assessment phases. The GCT consortium 

plans to build about 30 serial telescopes for the CTA Observatory, which will be provided from 

2019 to 2022 in accordance with the southern CTA site construction plans.  
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