
P
o
S
(
B
O
R
M
I
O
2
0
1
7
)
0
4
1

Recent developments in nuclear structure theory:
an outlook on the muonic atom program

Oscar Javier Hernandez
Triumf, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada and
University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
E-mail: javierh@phas.ubc.ca

Sonia Bacca∗

TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada
University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
E-mail: bacca@triumf.ca

Kyle Andrew Wendt
Lawrence Livermore National Laboratory, P.O. Box 808, L-414,
Livermore, California 94551, USA
E-mail: wendt6@llnl.gov

The discovery of the proton-radius puzzle and the subsequent deuteron-radius puzzle is fueling an
on-going debate on possible explanations for the difference in the observed radii obtained from
muonic atoms and from electron-nucleus systems. Atomic nuclei have a complex internal struc-
ture that must be taken into account when analyzing experimental spectroscopic results. Ab initio
nuclear structure theory provided the so far most precise estimates of important corrections to
the Lamb shift in muonic atoms and is well poised to also investigate nuclear structure correc-
tions to the hyperfine splitting in muonic atoms. Independently on whether the puzzle is due to
beyond-the-standard-model physics or not, nuclear structure corrections are a necessary theoreti-
cal input to any experimental extraction of electric and magnetic radii from precise muonic atom
measurements.
Here, we review the status of the calculations performed by the TRIUMF-Hebrew University
group, focusing on the deuteron, and discuss preliminary results on magnetic sum rules calculated
with two-body currents at next-to-leading order. Two-body currents will be an important ingre-
dient in future calculations of nuclear structure corrections to the hyperfine splitting in muonic
atoms.
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1. Introduction

In 2010, the CREMA (Charge Radius Experiment with Muonic Atoms) collaboration ex-
tracted the proton charge radius from measurements of the 2S−2P transition in muonic hydrogen
(µH), a proton orbited by a muon. It was found to deviate by about 7σ [1, 2] with respect to the
value obtained in decades of experiments on both hydrogen spectroscopy and electron scattering
off the proton. This large discrepancy hinted towards new physics and created a lot of excitement
in the community. Interpretations of the discrepancy are being sought into systematic experimen-
tal errors, novel aspects of hadronic structure, or beyond-the-standard-model theories, leading to
lepton universality violations. To investigate whether the discrepancy persists or changes with the
nuclear mass number A and proton number Z, the CREMA collaboration has embarked on a strong
experimental program to extract the charge radii of light nuclei by measuring the Lamb shifts in
µ-D, µ-3He+ and µ-4He+.

The Lamb shift is related to the charge radius Rc by

∆ELS = δQED +δFS(Rc)+δTPE. (1.1)

The three terms, from the largest to the smallest, are the quantum electrodynamics (QED) contribu-
tions, the leading correction due to the finite size of the nucleus, δFS(Rc) =

m3
r (Zα)4

12 R2
c (in h̄ = c = 1

units and with Z and α being the proton number and fine structure constant, respectively), and the
two-photon exchange (TPE) contribution.

lepton

Nucleus

Figure 1: The lepton-nucleus two-photon-exchange. The blob denotes the excitation of the nucleus in the
intermediate states between the two photons.

While quantum electrodynamical calculations of these atoms are extremely precise, effects due
to the structure of the nucleus constitute the main source of uncertainty and are the bottleneck to
increase the precision of the extracted radius. Nuclear structure corrections appear via finite nuclear
size effects – precisely those effect that enable the extraction of the radius–, as well as via nuclear
excitations in the TPE diagram. Here, virtual photons are exchanged between the lepton and the
nucleus/hadron as shown in Fig. 1. The precision via which δTPE can be calculated determines the
precision in the extracted charge radius. Independently on whether the puzzle is due to beyond-the-
standard-model physics or not, precise calculations of nuclear structure corrections will always be
needed and must accompany the experimental program aimed at extracting radii.

To appreciate the importance of nuclear structure corrections in nuclei, it is interesting to look
at the experimental error bar via which the Lamb shift energy can be measured, δexp(∆ELS), and
compare it to the theoretical error bar in the TPE calculations, δth(∆ELS). As shown in Table 1,
while for the µ-H case both errors are of the same order of magnitude, for µ-D and µ−3He+ the
ratio between δth(∆ELS) and δexp(∆ELS) is about 6. This indicates, that for light muonic atoms TPE
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Table 1: Experimental error bar in the measured Lamb-shift energy of muonic atoms δexp(∆ELS) compared
to the error bar in the theoretical calculation of the TPE energy corrections to the Lamb-shift δth(∆ELS).
Data taken from Ref. [2, 3, 4, 5].

δexp(∆ELS) δth(∆ELS)

µ-H 2.3 µeV 2 µeV
µ-D 3.4 µeV 20 µeV
µ-3He+ 0.08 meV 0.52 meV

corrections constitute the real bottleneck to exploit the experimental precision in the extraction of
the charge radius.

So far, the TRIUMF - Hebrew University group has provided the most precise determination
of δTPE corrections to the Lamb shift for µ-D [6], µ-3He+ and µ-3H [7], and µ-4He+ [8, 9] using
chiral effective field theory [10, 11] and phenomenological potentials [12] combined with state-of-
the-art few-body calculational tools.

Contributions to δTPE can be divided into the elastic Zemach term and the inelastic polarization
term, i.e., δTPE = δZem +δpol. Both can be further separated into nuclear (δ A) and nucleonic (δ N)

components, i.e., δTPE = δ A
Zem+δ A

pol+δ N
Zem+δ N

pol. The inelastic nuclear term is called polarization
term, since it is related to the polarizability of the nucleus, i.e., the excitations of the nucleus over all
its continuum spectrum due to the virtual absorption and subsequent emission of photons, expressed
by the blob in Fig. 1. Below we report our results for the various nuclei, also shown in Ref. [13].
The uncertainty associated with each value is given in brackets and includes the numerical, nuclear
model, and atomic physics errors. It is worth noticing that the uncertainties in δTPE are slightly
different than those shown in Table 1. This is due to the fact that the uncertainties in Table 1 are
taken from the analysis performed by colleagues [4, 5] and do not include only our calculations,
but an average with results of other groups as well [14, 15, 16, 17].

Table 2: Contributions to δTPE of the Lamb shift in light muonic atoms, in meV, where we omit the proton-
neutron subtraction term [4].

δ A
Zem δ A

pol δ N
Zem δ N

pol δTPE

µ-D -0.424(3) -1.245(19) -0.030(2) -0.028(2) -1.727(20)
µ-3H -0.227(6) -0.473(17) -0.033(2) -0.034(16) -0.767(25)
µ-3He+ -10.49(24) -4.17(17) -0.52(3) -0.28(12) -15.46(39)
µ-4He+ -6.29(28) -2.36(14) -0.54(3) -0.38(22) -9.58(38)

In particular, here we want to concentrate on the deuteron, for which we have so far performed
the most thorough calculations, by also analyzing the convergence of the chiral expansion, see
Ref. [6]. Our results, together with others, have already been used by the CREMA collaborations
to extract the value of the charge radius from muonic deuterium Lamb shift measurements [3].
Interestingly, in analogy to the proton case, such radius revealed to be smaller, with about a 7σ

deviation with respect to CODATA-2010 evaluations [18] and 3.5 σ with respect to spectroscopic
extractions from ordinary deuterium alone [19]. Different from the proton case, in the so called
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“deuteron-radius puzzle” electron scattering data [20] are not precise enough to discriminate among
muonic and electronic deuteron spectroscopy.

By using Eq. (1.1) one can also experimentally determine the size of δTPE. Indeed, the µ-
D measurements in [3] provided the left-hand-side of Eq. (1.1), while the size of the deuteron
can be determined from a combination of measurements of isotope shift in ordinary deuteron and
muonic Lamb shift in the proton. Interestingly, the measured δTPE turns out to deviate 2.5σ [3]
with respect to theoretical computations, including our work [6] and calculations by others, see
e.g., Refs. [14, 17]. While this fact certainly needs to be further investigated, with respect to the
7σ deviation between muonic deuteron and CODATA-2010 evaluation, this difference is minor.
In the past we investigated the dependence of δTPE on the nuclear potential used in input and
found it to be small. Below, we present a graphic representation of the various contributions to

Figure 2: Graphic representation of the various contributions to δ A
pol +δ A

Zem in the 2S-2P Lamb shift of µD,
calculated with the AV18 [12] and a chiral effective field theory nuclear potential at N3LO [10].

δ A
pol + δ A

Zem for the muonic deuteron case. This corresponds to δTPE, a part from the δ N
pol term,

which is tabulated in Table 2 and is independent on the nuclear interaction. We use two potentials,
one of phenomenological nature, the AV18 [12] and one chiral interaction at next-to-next-to-next-
to-leading order (N3LO) [10]. Details on the expressions of the various terms can be found in
Refs. [6, 7, 8]. As one can see from Fig. 2, the potential dependence is quite small, of the order of
0.5%. Rather than sampling potentials among those available in the literature, in future we aim at
performing a statistical analysis of δTPE by propagating the error bars associated to the parameters
in the interaction through the observables themselves. This should enable us to investigate whether
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the above mentioned 2.5σ deviation is originated from the procedures used in nuclear physics or
not. Work in this direction is in progress.

Similarly to the case of the Lamb shift, the hyperfine splitting energy is related to the magnetic
radius RZ as

∆Ehfs = δ
hfs
QED +δ

hfs
FS (RZ)+δ

hfs
TPE , (1.2)

where nuclear structure corrections come mostly from a TPE diagram. Due to the fact that mea-
surements of the hyperfine splitting are planned for µ-D and µ-3He+, we are refining our tools to
perform calculations of δ hfs

TPE as well. In case of the hyperfine splitting δ hfs
TPE is expected to be also

related to magnetic properties of the nucleus [21, 22, 23]. To the purpose of enhancing our capabil-
ities to compute magnetic properties, we investigate sum rules of the magnetic response function,
starting from the deuteron. The magnetic response function is defined as

R(ω) =
1

2J0 +1

∫
∑

f

∣∣〈Ψ f ||µµµ||Ψ0
〉∣∣2 δ (E f −E0−ω) , (1.3)

where µµµ is the magnetic dipole operator. Here, |Ψ0〉 and
∣∣Ψ f

〉
denote the ground and excited

states, respectively, while the sum/integral symbol is intended as a sum of discrete and an integral
on continuum quantum numbers and states. The double bar denotes the reduced matrix element
and the factor in front is an average on the projection of the ground state angular momentum J0.

It is known that in nuclei magnetic transitions are not well described in impulse approxima-
tion, i.e., using one-body operators, and that two-body currents are important. Their expression has
been derived in chiral effective field theory and their effect has been found to be very important in
magnetic dipole moments and magnetic dipole transitions of light nuclei [24]. Here, we will de-
velop our tools to accommodate the effect of leading order two-body currents from chiral effective
field theory in the magnetic transitions of the deuteron.

2. Two-body currents in the magnetic operator at next-to-leading order

In chiral effective field theory, similarly to what done for the strong force, the electromagnetic
current can be expanded into many-body operators as

j = ∑
i

ji +∑
i< j

ji j + . . . . (2.1)

Calculations performed using one-body operators only are named impulse approximation calcu-
lations and are based on the idea that nuclear properties are expressed as if the probing photon
interacted only with individual nucleons. The impulse approximation corresponds to the leading
(LO) order in chiral effective field theory. This description is improved by accounting for the ef-
fects of two-nucleon interactions onto the electromagnetic currents associated with nucleon pairs.
Two-body currents follow naturally once a meson-exchange mechanism is invoked to describe the
interactions among nucleons. If one considers only the long range part of the nucleon-nucleon
force, mediated by a one-pion exchange, two-body currents of one-pion nature emerge. They
result from photons hooking up with exchanged pions, are shown in Fig. 3 by the seagull and
pion-in-flight diagrams.
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Figure 3: Two-body currents in chiral effective field theory from a one-pion exchange diagram between the
two nucleons: seagull (left) and pion in flight (right). The wiggle represents the electromagnetic interaction.

The one-body electromagnetic current operator in the non-relativistic limit consists of the usual
convection and spin-magnetization currents and in coordinate space read [25]

jc
i (x) =

ei

2m
{pi,δ (x− ri)}, (2.2)

js
i (x) = i

eµi

2m
σσσ i× [pi,δ (x− ri)] . (2.3)

Here m is the nucleon mass (we keep the mass of the proton equal to the mass of the neutron) and
ei and µi are the electric charge and magnetic moment of the nucleon, respectively, defined as

ei =

(
1+ τ3

i
2

)
(2.4)

µi = µp

(
1+ τ3

i
2

)
+µn

(
1− τ3

i
2

)
, (2.5)

with τ3
i being the third component of the nucleon isospin and µp = 2.793 and µn = −1.913 in

nucleon magneton µN units. Here, nucleon coordinates and momenta are denoted by ri and pi,
respectively, while σσσ i is the spin of the nucleon.

The one pion exchange two-body currents of Fig. 3 appear at next-to-leading order (NLO) in
chiral effective field theory and is the leading two-body contribution. The effect of NLO currents
amounts to 70-80% of the total two-body currents contribution in magnetic properties of few-body
systems [26]. We will call them jNLO

i j and separate them into seagull current js
i j and the pion in-flight

current jπ
i j. Their expressions, more commonly found in momentum space, read [26]

js
i j(ki,k j) =−ie g2

A
F2

π

GV
E(q

2)(τττ i× τττ j)
3
(

σσσ i

(
σσσ j·k j

ω2
k j

)
−σσσ j

(
σσσ i·ki
ω2

ki

))
(2.6)

jπ
i j(ki,k j) =−ie g2

A
F2

π

GV
E(q

2)(τττ i× τττ j)
3 (k j−ki)

(
σσσ i·ki
ω2

ki

)(
σσσ j·k j

ω2
k j

)
, (2.7)

(2.8)

with

jNLO
i j (ki,k j) = js

i j(ki,k j)+ jπ
i j(ki,k j) . (2.9)

Here, ki/ j is the momentum transferred to the nucleon i or j, ω2
ki/ j

= k2
i/ j +m2

π is the squared energy
of the exchanged pion, while τττ i/ j are nucleon isospin Pauli matrices. By performing the Fourier
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transform of these two-body currents, we obtain the expressions in coordinate space [27]

js
i j(q) = −e

m2g2
A

4πF2
π

GV
E(q

2)(τττ i× τττ j)
3 eiq·R

[
e

1
2 iq·r

σσσ i (σσσ j · r̂)+ e−
1
2 iq·r

σσσ j (σσσ i · r̂)
](

1+
1

mr

)
e−mr

mr

jπ
i j(q) = e

2g2
A

(2π)3F2
π

GV
E(q

2)(τττ i× τττ j)
3 eiq·R

(
σσσ i ·
(

1
2

q− i∇∇∇r

))(
σσσ j ·

(
1
2

qqq+ i∇∇∇r

))
∇∇∇rI (q,r) ,

(2.10)

where q is the momentum transfer and we use relative and center of mass coordinate of the two-
interacting particles

R = 1
2 (ri + r j)

r = ri− r j . (2.11)

In the current expression, the functions I(q,r) arise when taking the Fourier transform of the pion
in-flight term and are defined as

I(q,r) =
∫

d3 p
eip·r(

m2 +
(
p− 1

2 q
)2
)(

m2 +
(
p+ 1

2 q
)2
) . (2.12)

Given a current operator in coordinate space, the magnetic dipole operator is obtained from
the latter using

µµµ =
1
2

∫
d3x x× j(x) . (2.13)

This general expression can be rewritten in the following way

µµµ =
1
2

R×
∫

d3x j(x)+
1
2

∫
d3x (x−R)× j(x) , (2.14)

and thus decomposed into two parts, where R is our center of mass coordinate. It is evident that the
first term of the above equation will vanish if one considers an A = 2 body problem in the center
of mass frame. Indeed, since we will be studying the deuteron, we will only consider the second
term. Since the R-dependency in the current can be written as eiq·Rj(q,r), the magnetic dipole
operator obtained from the second term can be written by the curl of the translational-invariant
current operator at low q as [28]

µµµ(r) = lim
q→0
− i

2
∇∇∇q× j(q,r) . (2.15)

Using the one-body current in Eq. (2.15) one obtains the usual magnetic dipole operator as

µµµ
LO
i = µN

[(
µS +µV τ3

i
2

)
σσσ i +

(
1+ τ3

i
2

)
`̀̀i

]
, (2.16)

where µS/V are the isoscalar and isovector nucleon magnetic moments, 4.7 and 0.88 in nucleon
nucleon magneton µN units, respectively. This one-body operator is the leading order term in
chiral effective field theory. To obtain the two-body corrections to the above one-body operator,

6
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we can plug in the expression of the seagull and pion in flight currents in Eq. (2.15), to obtain the
magnetic dipole operator due to the seagull and pion in flight diagrams, respectively, as

µµµ
s
i j = −e

mg2
A

16πF2
π

(τττ i× τττ j)
3 [r̂(r̂ · (σσσ i×σσσ j))−σσσ i×σσσ j] f (r) (2.17)

µµµ
π
i j = −

eg2
Am

16πF2
π

(τττ i× τττ j)
3 [(r̂ ·σσσ j)(r̂×σσσ i)− (r̂ ·σσσ i)(r̂×σσσ j)] f (r)

− eg2
Am

8πF2
π

(τττ i× τττ j)
3 (σσσ i×σσσ j)Y (r) . (2.18)

Here, the functions f (r) and Y (r), with r = |r| are

f (r) =

(
1+

1
mr

)
e−mr ,

Y (r) =
e−mr

mr
. (2.19)

Thus, at next-to-leading-order the two-body magnetic moment is given by the sum µµµNLO
i j = µµµs

i j +

µµµπ
i j as [25]

µµµ
NLO
i j =− eg2

Am
8πF2

π

(τττ i× τττ j)
3
[(

1+
1

mr

)
((σσσ i×σσσ j) · r̂) r̂− (σσσ i×σσσ j)

]
e−mr . (2.20)

Finally, the magnetic dipole operator will be given by a leading-order one body component
and a next-to-leading order two-body component as

µµµ = ∑
i

µµµ
LO
i +∑

i< j
µµµ

NLO
i j . (2.21)

Next, we will implement these operators in our deuteron calculation of magnetic properties. It
is important to remember that, in a many-body nucleus with A > 2, the NLO two-body correction
contains an other term which explicitly depends on R even at small q and is called Sachs term [25].
Furthermore, as already mentioned, other corrections exist at higher order in chiral effective field
theory and have been accounted for, e.g., in Refs. [24, 26]. From those calculations, it is evident
that the NLO two-body currents accounts for up to 70-80 % of the total two-body current effects.

3. Results

Using the above expressions for the one- and two-body magnetic dipole operators, we now
study some magnetic observables in the deuteron. First of all, due to the fact that µµµNLO

i j is of
isovector nature, contributions of two-body currents at next-to-leading order will vanish in the
magnetic moment of the deuteron. Thus, we concentrate on break-up observables, such as the sum
rules of the magnetic dipole transition function. In the following we will investigate quantities of
this kind

mn =
∫

dωR(ω)ωn (3.1)

7
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with n = −1 and 0, and R(ω) as in Eq. (1.3). In particular, for the case of n = −1 this quantity
is related to the magnetic susceptibility, and is the magnetic analogous of the electric dipole po-
larizability. Such sum rules have also been calculated in the past, see e.g. Ref. [29], so we can
compare our calculations with similar theoretical calculations. A comparison with experiment is
more difficult due to the fact that in sum rules one has to integrate the strength up to infinity and
one has to clearly separate out the contribution from other multipoles.

We perform our analysis by solving the deuteron via a diagonalization of the intrinsic Hamil-
tonian on the harmonic oscillator basis. We can perform calculations with any realistic two-body
potential and will show here results with either the AV18 [12] or the N3LO chiral potential [10].
The calculation of the sum rules follows according to Ref. [6].

First, to check our numerical ability to calculate magnetic sum rules we compare our LO
calculations, corresponding to the use of a one-body operator only µµµ = ∑i µµµLO

i , with results by
Arenhövel [29, 30]. In Ref. [29], results were obtained with the Bonn r-space potential, but here
we present a comparison with a more modern interaction, the AV18 [12] potential. As one can
see in Table 3 we obtain a rather good agreement. The small sub-percentage difference has to be
attributed to the fact that we have integrated the magnetic dipole strength obtained from Ref. [30]
using Eq. (3.1), while in our case we computed the sum rule directly as an expectation value on the
ground-state. To confirm our numbers, we have performed two independent implementations and
obtained very nice numerical agreement among them, at the level of 0.1% or better.

Table 3: Sum rules of the magnetic response function of the deuteron, calculated with the AV18 poten-
tial [12], using a one-body magnetic dipole operator.

m−1 m0

This work 13.9 fm3 0.245 fm2

Ref. [30] 14.0 fm3 0.244 fm2

Next, we introduce the two-body correction to the magnetic dipole operator at NLO and com-
pare to the LO calculation in Table 4. In this case we will use a potential from chiral effective field
theory at N3LO [10]. It has to be noted that, from the chiral effective field theory stand point, such
calculations are not fully consistent, since potential and currents are not taken at the same order, but
at this point our objective is to prepare our tools for a more sophisticated calculation to be carried
out in the future.

Table 4: Sum rules of the magnetic response function of the deuteron, calculated with a chiral interaction at
N3LO [10] and a magnetic dipole operator at LO and at NLO.

m−1 m0

LO 14.0 fm3 0.245 fm2

LO+ NLO 15.1 fm3 0.277 fm2

Given that, to the best of our knowledge, no calculation with just the NLO two-body current is
available in the literature, we have compared our numerics against an independent computation of
the multipole matrix elements of tensor currents [31] and found a numerical agreement at the 0.1%

8
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level or better. Overall, we find the effect of two-body currents to be between 5 and 11% depending
on the order of the sum rule. Notably, the effect is bigger on the m0 sum rule than on the m−1. This
fact indicats that two-body currents have more of an effect at larger energies than at lower energies.
This is consistent with results in the literature [29] from phenomenological currents and potentials.
Clearly, even if their effect might be as small as a 5%, two-body currents need to be taken into
account when doing precision physics as in the studies of nuclear structure corrections in muonic
atoms.

In the case of the Lamb shift, magnetic contributions to the δTPE diagram appear via δM. This
term is very small, amounting to 0.007 meV in the deuteron when the LO magnetic operator is used.
With the addition of the two-body contributions at NLO, its contribution goes from 0.007 to 0.009
meV, with a 20% enhancement. While the overall contribution of two-body magnetic currents is
very small in the Lamb shift due to the fact the δM itself is small, it is expected to be larger in the
hyperfine splitting, where the magnetic current distributions play a role, see Ref. [21, 22, 23].

4. Conclusion

We have reviewed the status of the nuclear structure calculations performed by the TRIUMF
- Hebrew University group for the Lamb shift in muonic atoms and presented new calculations
of magnetic sum rules in the deuterium with two-body currents. We find an effect of 5 and 11%
on the m−1 and m0 magnetic sum rules, respectively, which is consistent with previous investiga-
tions. Two-body currents are expected to provide a non-negligible contribution in nuclear structure
corrections to the hyperfine splitting in muonic atoms. While the presented results constitute a
necessary ingredient for a detailed study of the hyperfine splitting corrections, a complete analysis
is left for future work.
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