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Study of corrections to the eikonal approximation
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For the last decades, multiple international facilities have developed Radioactive-Ion Beams (RIB)

to measure reaction processes including exotic nuclei. These measurements coupled with an

accurate theoretical model of the reaction enable us to infer information about the structure of

these nuclei. The partial-wave expansion provides a precise description of two-body collisions

but has a large computational cost, when extended to two- (ormore) body description of the

projectile. To cope with this issue, the eikonal approximation is a powerful tool as it reduces

the computational time and still describes the quantum effects observed in reaction observables.

However, its range of validity is restricted to high energy and to forward scattering angles. In

this work, we analyse the extension of the eikonal approximation to lower energies and larger

angles through the implementation of two corrections. These aim to improve the treatment of the

nuclear and Coulomb interactions within the eikonal model.The first correction is based on an

expansion of theT-matrix while the second relies on a semi-classical approach. They permit to

better account for the deflection of the projectile by the target, which is neglected in the standard

eikonal model. The gain in accuracy of each correction is evaluated through the analyses of

angular cross sections computed with the standard eikonal model, its corrections and the partial-

wave expansion. These analyses have been performed for tightly bound projectiles (10Be) from

intermediate energies (67 MeV/nucleon) down to energies ofinterest of future RIB facilities such

as HIE-ISOLDE and ReA12 at MSU (10 MeV/nucleon).
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1. Introduction

The development of Radioactive-Ion Beams (RIB) has enabledthe discovery of nuclei with
very unexpected structures. In particular, in the neutron-rich region of the nuclear chart, halo nuclei
have been observed. These exotic nuclei exhibit a very largematter radius due to the low binding
energy of one or two neutrons, which allows them to decouple from the core of the nucleus and
to form a diffuse halo [1]. They are modelled as two- or three-body objects: a compact core and
one or two valence neutrons. As they are very short-lived, they cannot be studied through usual
spectroscopic techniques but we can infer information about their structure from measurements of
reaction processes coupled with an accurate model of the reaction [2, 3].

Nowadays some RIB facilities, like ISOLDE at CERN, provide exotic beams at 5 MeV/nucleon
and the goal is to reach 10 MeV/nucleon. At such energies, precise models such as the Continuum-
Discretised Coupled Channel method (CDCC, see Refs. [2, 3, 4]) have large computational cost
and can present convergence problems. The eikonal approximation is a quantal method which has
a reduced computational time and can be easily interpreted.Unfortunately, it is valid only at high
energies [5]. In this work, we investigate the extension of this model to lower energies through the
study of two corrections.

These corrections have already given interesting results for different types of reaction at var-
ious energies. Indeed, the first correction, proposed by Wallace (see Refs. [6]), has also been
analysed in Refs. [7, 8, 9, 10]. Moreover, Refs. [8, 11, 12] have demonstrated the efficiency of the
second correction for Coulomb-dominated collisions. Because the latter correction works fine for
collisions on heavy targets, we seek to extend it to nuclear dominated reactions, viz. light targets.
In this work, we provide analyses of these corrections to simple cases, i.e. two-body collisions.
Our final goal is to generalise them to three- and four-body collisions.

In Sec. 2, we describe the eikonal approximation for the elastic scattering and the two afore-
mentioned corrections. Then, in Sec. 3, the numerical inputs used in our computations are given.
From the analyses conducted on the differential cross sections for the elastic scattering of10Be off
12C, we conclude and propose an idea to pursue the extension of the eikonal model.

2. Theoretical framework

2.1 The eikonal description of elastic scattering

In this study, we consider the elastic scattering of a projectile P of massmP and chargeZPe
impinging on a targetT of massmT and chargeZTe. We assume both nuclei to be structureless and
spinless and their interaction to be simulated by a central optical potentialV. Their relative motion
can hence be described by the following Schrödinger equation

[
P2

2µ
+V(R)

]
Ψ(R) = EΨ(R), (2.1)

whereR is the projectile-target relative position,P the corresponding momentum,µ =mPmT/(mP+

mT) theP-T reduced mass andE the total energy of the system in the center-of-mass restframe.
To describe the aforementioned collision, Eq. (2.1) has to be solved with the condition that the

projectile is impinging on the target with an initial momentumℏK = ℏKẐ, i.e., whose direction we
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choose for theZ-axis (see Fig. 1):

Ψ(R) −→
Z→−∞

eiKZ+···. (2.2)

The “· · · ” in this asymptotic expression indicates that the incomingplane wave is distorted byV,
even at large distances.

The eikonal approximation assumes that at sufficiently highenergy, the relative motion of the
nuclei does not differ much from the initial plane wave of Eq.(2.2). It is then suggested to factorize
that plane wave out of the wave functionΨ [2, 5, 13]

Ψ(R) = eiKZ Ψ̂(R). (2.3)

The new wave function̂Ψ, depending smoothly onR, enables us to simplify the Schrödinger
equation (2.1). Inserting Eq. (2.3) into Eq. (2.1) and neglecting the second-order derivative of
Ψ̂ in comparison to its first-order derivative, leads to [2, 5, 13]

iℏv
∂

∂Z
Ψ̂(b,Z) =V(b,Z)Ψ̂(b,Z), (2.4)

wherev = ℏK/µ is the initial velocity of the projectile relative to the target. In Eq. (2.4), we
express explicitly the dependence ofΨ̂ on the transverseb and longitudinalZ components ofR as
illustrated in Fig. 1.

T

P
R

v

Ẑ

Z

b

Figure 1: Coordinate system: the projectile-target relative coordinateR expanded in its transverse
b and longitudinalZ components.

The solutions of Eq. (2.4) read [2, 5, 13]

Ψ̂(b,Z) = exp

[
−

i
ℏv

∫ Z

−∞
V(b,Z′)dZ′

]
. (2.5)

This eikonal approximation of the wave function has a simplesemiclassical interpretation: the
projectile is seen as moving on a straight-line trajectory,accumulating a complex phase through its
interaction with the target.

The scattering amplitude can be derived from these solutions as [2, 5, 13]

f (θ) =−
iK
2π

∫
d2b{exp[iχ0(b)]−1}exp(iq ·b) , (2.6)

whereℏq = ℏK′ − ℏKẐ is the momentum transferred during the scattering process to reach the
final momentumℏK′ and

χ0(b) =−
1
ℏv

∫ ∞

−∞
V(b,Z)dZ (2.7)
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is the eikonal phase.
Since the eikonal phase Eq. (2.7) diverges for the Coulomb potential, that interaction requires

a particular treatment. As indicated in Ref. [13], one should simply add to the eikonal phase
computed with the nuclear part of the optical potential the Coulomb eikonal phase

χC = 2η ln(Kb), (2.8)

whereη = ZPZTe2/4πε0ℏv is the Sommerfeld parameter. That phase leads to the exact Coulomb
scattering amplitude.

At low energy, the eikonal approximation is no longer valid.However, since its implemen-
tation and interpretation are straightforward, it would beuseful to extend its domain of validity
to low energy. In the present work, we study two corrections which aim to take into account the
deflection of the projectile by the target. The first one, proposed by Wallace (see Refs. [6]), acts on
the nuclear interaction, while the second one can be appliedto both interactions [8, 11].

2.2 Wallace’s correction

It is derived from an expansion of theT-matrix whose exact form reads [6, 13]

T =V +VGV, (2.9)

whereG is the exact propagator defined byG−1 = E−P2/2µ −V + iε . This propagator can be
expressed in terms of the eikonal propagatorg and a corrective termN accounting for the deviations
of the wave vector from the average wave vectorK̃ = (K′+K)/2 due to theP-T interaction during
the reaction process [6]

G = g+gNG. (2.10)

Wallace has obtained an expansion of theT-matrix by inserting iteratively this relation into
Eq. (2.9)

T = (V +VgV)+VgNgV+ ..., (2.11)

where the terms in parenthesis correspond to the standard eikonal approximation.
In Refs. [6], it is shown that the scattering amplitude at themth order can be expressed as

f (m)(θ) = −
iK
2π

∫
d2bT

(m)(b)exp(iq ·b) . (2.12)

The zeroth orderT (0) corresponds to the standard eikonal model, developed by Glauber [5] [see
Eq. (2.6)]. Wallace has derived the first three corrected orders of theT-matricesT (m) in Refs. [6].
The first order reads

T
(I)(b) = exp{i [χ0(b)+ τ1(b)]}−1

whereτ1 is an additional phase depending on the derivative of the potential.
Two main limitations of this correction are identified in Refs. [6]. The expansion suggested

by Wallace is valid only at sufficiently large energies and for potentials which vary smoothly.
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VR = 123.0 MeV WI = 65.0 MeV RR = 3.33 fm RI = 3.47 fm aR = aI = 0.80 fm

Table 1: Parameters of the potential used to simulate the10Be-12C nuclear interaction [see
Eq. (3.1)]. This potential is taken from Ref. [7].

These conditions ensure that the expansion parameterε and the derivatives of the potential take
small values, which is necessary for the perturbation treatment to hold. Physically, it is due to the
fact that, at lower energies, theP-T relative motion differs more from the initial plane wave [see
Eq. (2.3)]. We can also note that this correction is only significant for the nuclear interaction since
the corrective terms vanish exactly for a potential decreasing as 1/r.

2.3 Semi-classical correction

As mentioned in Sec. 2.1, within the eikonal approximation framework, the projectile is seen
as moving along straight-line trajectories and therefore the deflection of the projectile by the target
is neglected. To improve the simulation of the Coulomb interaction within the eikonal model, we
can replace the actual impact parameterb in the eikonal phase by the distance of closest approach
between the projectile and the target in the corresponding Coulomb trajectory [13, 14]. In Ref. [12],
it was observed that this correction enables to account efficiently for that deflection in the Coulomb
breakup of halo nuclei.

Similarly, an extension of this correction to the nuclear interaction is used in Refs. [8, 11].
To also account for the deflection due to the nuclear interaction, they have proposed to apply the
same idea with the distance of closest approach between the two nuclei of the classical trajectory
considering both interactions [8, 11]. To ensure the conservation of the angular momentum, the
eikonal phase is also multiplied by the ratio between the distance of closest approach and the actual
impact parameter. It is equivalent to change the asymptoticvelocity by the tangential velocity at
the distance of closest approach. In this study, this distance is calculated from the real part of the
potential, i.e. the Coulomb potential and the real part of the nuclear optical potential.

3. Results

3.1 Projectile-target potentials

To analyse the effects of the corrections presented in Sec. 2, we consider the elastic scattering
of a nuclear-dominated reaction (10Be off 12C) at different energies. In this work, we use the
potential developed in [7] to simulate the10Be-12C interaction. The nuclear part is given by

VN(R) = −VR fWS(R,RR,aR)− iWI fWS(R,RI ,aI ), (3.1)

with fWS(R,RX,aX) =
1

1+e
R−RX

aX

, (3.2)

with the different parameters listed in Table 1. The Coulombpart of the interaction is simulated by
the potential of a uniformly charged sphere of radiusRC = 1.2× (101/3 +121/3) fm [7]. Since the
goal of the present study is to compare the standard eikonal model with its corrections, we use the
same potential for all calculations and we neglect any energy dependence.
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3.2 Analysis

To evaluate the gain brought by each corrections presented in Sec. 2, we compare the cross
sections for the elastic scattering and theT-matrices at two energies (67 and 10 MeV/nucleon) with
results obtained with a fully-converged partial-wave expansion, considered as exact. In Fig. 2, we
represented these exact results by the red solid line and thestandard eikonal model computations
by the green dashed line.

As the terms of the second and the third orders of Wallace’s correction are negligible, we
only plot the first order in the blue short dashed line. This correction leads to nearly exact re-
sults at high energy (67 MeV/nucleon in Figs. 2(a) and 2(b)) but is less efficient at lower energy
(10 MeV/nucleon in Figs. 2(c) and 2(d)) since there are stilldiscrepancies with the exact results.
Nevertheless, at low energy, the oscillation pattern of thecross sections is better reproduced than
with the standard eikonal approximation. But the correction induces a shift of the cross sections
to more forward angles and of theT-matrices to larger impact parameters. It can be explained
by the attractive feature of the nuclear interaction: as Wallace’s correction adds corrections to the
nuclear phase, it increases the attractive force between the projectile and the target, leading to an
underestimation of the scattering angle.

To counter this shift, the Coulomb repulsion needs to be better accounted for. This motivates
the introduction of the semi-classical Coulomb correction, which leads to the results plotted in the
magenta dotted line. At high energy, it has no impact and the good agreement is kept unchanged.
At low energy, the semi-classical Coulomb correction compensates the shift induced by Wallace’s
correction and the calculations are now in phase with the exact ones. However, the resulting cross
sections still lie above the exact ones at large angles. Therefore, we should enhance the absorption
at small impact parameters to increase the accuracy.

This need for higher absorption as well as the desire to have only one consistent correction to
both interactions has driven us to analyse the semi-classical correction applied to both interactions,
corresponding to the black dotted line. At high energy, the accuracy of the eikonal model is wors-
ened while at lower energies one can note a small improvementat forward angles (below 20◦). It
also reproduces well the oscillation pattern of the cross sections without inducing any shift in the
results. Yet, even at low energy, this correction is still insufficient at large angles due to a lack of
absorption.

4. Conclusions

In the present work, we have analysed two corrections and their interplay in a simple case, i.e.
a two-body collision of light nuclei. Both corrections aim to account for the deflection of the pro-
jectile by the target due to both interactions, neglected inthe standard eikonal model. To evaluate
the accuracy gain brought by each corrections, we have computed the angular distribution of the
cross sections for the elastic scattering of10Be off 12C at two energies (67 and 10 MeV/nucleon).

Results have shown that Wallace’s correction is more efficient at high energies (67 MeV/nucleon)
and reproduces well the oscillation pattern of the angular distribution. It also induces a shift to
more forward angles at low energies (10 MeV/nucleon) which is cancelled when the semi-classical
Coulomb correction is introduced [13, 14]. Both corrections combined enable an extension of the
eikonal model to lower energies but the cross sections are still overestimated at large angles.
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Figure 2: Elastic scattering of10Be off 12C at 67 MeV/nucleon (a,b) and 10 MeV/nucleon (c,d).
The cross sections are plotted as a ratio to Rutherford as a function of the scattering angleθ (a,c)
and the imaginary part of theT-matrices as a function of the angular momentum and the corre-
sponding impact parameter (b,d). The results are obtained with the partial-wave expansion (red
solid line), the standard eikonal approximation (green long dashed line), Wallace’s correction (blue
short dashed line, see Sec. 2.2), Wallace’s correction combined with the semi-classical Coulomb
correction (magenta dotted line) and the semi-classical Coulomb and nuclear correction (black
dotted line).

To cope with this inadequacy and to have one consistent correction, we have studied the semi-
classical correction applied to both Coulomb and nuclear interactions [8, 11]. The analysis has
pointed out that there are no significant accuracy gain at lowenergies and that at high energies,
the eikonal model leads to less precise results. The only improvement is the reproduction of the
amplitude of the oscillations.

In conclusion, we have achieved an extension of the eikonal model to low energies but both
corrections tested have failed at reproducing the absorption at large angles. To enhance absorption,
we could apply the semi-classical correction with a complexdistance of closest approach computed
from the classical trajectory considering the whole optical potential [8]. In this way, the imaginary
part of the potential would be increased for small impact parameters, hopefully this would cause a
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reduction of the cross sections at large angles.
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