## No- $\pi$ Theorem for Euclidean Massless Correlators

P. A. Baikov,<br>Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 1(2),<br>Leninskie gory, Moscow 119991, Russian Federation<br>E-mail: baikov@theory.sinp.msu.ru<br>K. G. Chetyrkin*<br>II. Institut für Theoretische Physik Universität Hamburg Luruper Chaussee 149, 22761 Hamburg, Germany<br>E-mail: konstantin.chetyrkin@desy.de

We provide the reader with a (very) short review of recent advances in our understanding of the $\pi$-dependent terms in massless (Euclidean) 2-point functions as well as in generic anomalous dimensions and $\beta$-functions. We extend the considerations of [1] by one more loop, that is for the case of 6-loop correlators and 7-loop renormalization group (RG) functions.

[^0][^1]
## 1. Introduction and Preliminaries

Since the seminal calculation of the Adler function at order $\alpha_{s}^{3}$ [2] it has been known that p-functions demonstrate striking regularities in terms proportional to $\pi^{2 n}$, with $n$ being positive integer. Here by p-functions we understand ( $\overline{\mathrm{MS}}$-renormalized) Euclidean Green functions ${ }^{1}$ or 2-point correlators or even some combination thereof, expressible in terms of massless propagatorlike Feynman integrals (to be named p-integrals below).

To describe these regularities we need to introduce a few notations and conventions. (In what follows we limit ourselves by the case of QCD considered in the Landau gauge). Let

$$
\begin{equation*}
F_{n}\left(a, \ell_{\mu}\right)=1+\sum_{1 \leq i \leq n}^{0 \leq j \leq i} g_{i, j}\left(\ell_{\mu}\right)^{j} a^{i} \tag{1.1}
\end{equation*}
$$

be a p-function, where $a=\frac{\alpha_{s}(\mu)}{4 \pi}, \ell_{\mu}=\ln \frac{\mu^{2}}{Q^{2}}$ and $Q$ is an (Euclidean) external momentum. The integer $n$ stands for the (maximal) power of $\alpha_{s}$ appearing in the p-integrals contributing to $F_{n}$. The $F$ without $n$ will stand as a shortcut for a formal series $F_{\infty}$. In terms of bare quantities ${ }^{2}$

$$
\begin{equation*}
F=Z F_{B}\left(a_{B}, \ell_{\mu}\right), \quad Z=1+\sum_{i \geq 1}^{1 \leq j \leq i} Z_{i, j} \frac{a^{i}}{\varepsilon^{j}} \tag{1.2}
\end{equation*}
$$

with the bare coupling constant and the corresponding renormalization constant being

$$
\begin{gather*}
a_{B}=\mu^{2 \varepsilon} Z_{a} a, \quad Z_{a}=1+\sum_{i \geq 1}^{1 \leq j \leq i}\left(Z_{a}\right)_{i, j} \frac{a^{i}}{\varepsilon^{j}}  \tag{1.3}\\
\left(\frac{\partial}{\partial \ell_{\mu}}+\beta a \frac{\partial}{\partial a}\right) F=\gamma F \tag{1.4}
\end{gather*}
$$

with the anomalous dimension (AD)

$$
\begin{equation*}
\gamma(a)=\sum_{i \geq 1} \gamma_{i} a^{i}, \quad \gamma_{i}=-i Z_{i, 1} \tag{1.5}
\end{equation*}
$$

The coefficients of the $\beta$-function $\beta_{i}$ are related to $Z_{a}$ in the standard way:

$$
\begin{equation*}
\beta_{i}=i\left(Z_{a}\right)_{i, 1} \tag{1.6}
\end{equation*}
$$

A p-function $F$ is called scale-independent if the corresponding $\mathrm{AD} \gamma \equiv 0$. If $\gamma \neq 0$ then one can always construct a scale-invariant object from $F$ and $\gamma$, namely:

$$
\begin{equation*}
F_{n+1}^{\mathrm{si}}\left(a, \ell_{\mu}\right)=\frac{\partial}{\partial \ell_{\mu}}(\ln F)_{n+1} \equiv\left(\frac{\left(\gamma(a)-\beta(a) a \frac{\partial}{\partial a}\right) F_{n}}{F_{n}}\right)_{n+1} \tag{1.7}
\end{equation*}
$$

Note that $F_{n+1}^{\mathrm{si}}\left(a, \ell_{\mu}\right)$ starts from the first power of the coupling constant $a$ and is formally composed from $\mathscr{O}\left(\alpha_{s}^{n+1}\right)$ Feynman diagrams. In the same time is can be completely restored from $F_{n}$ and the $(n+1)$-loop AD $\gamma$.

An (incomplete) list of the currently known regularities ${ }^{3}$ includes the following cases.

[^2]1. Scale-independent p-functions $F_{n}$ and $F_{n}^{\mathrm{si}}$ with $n \leq 4$ are free from $\pi$-dependent terms.
2. Scale-independent p-functions $F_{5}^{s i}$ are free from $\pi^{6}$ and $\pi^{2}$ but do depend on $\pi^{4}$.
3. The QCD $\beta$-function starts to depend on $\pi$ at 5 loops only $[7,8,9]$ (via $\zeta_{4}=\pi^{4} / 90$ ). In addition, there exits a remarkable identity [1]

$$
\beta_{5}^{\zeta_{4}}=\frac{9}{8} \beta_{1} \beta_{4}^{\zeta_{3}}, \quad \text { with } \quad F^{\zeta_{i}}=\lim _{\zeta_{i} \rightarrow 0} \frac{\partial}{\partial \zeta_{i}} F
$$

4. If we change the $\overline{\mathrm{MS}}$-renormalization scheme as follows:

$$
\begin{equation*}
a=\bar{a}\left(1+c_{1} \bar{a}+c_{2} \bar{a}^{2}+c_{3} \bar{a}^{3}+\frac{1}{3} \frac{\beta_{5}}{\beta_{1}} \bar{a}^{4}\right) \tag{1.8}
\end{equation*}
$$

with $c_{1}, c_{2}$ and $c_{3}$ being any rational numbers, then the function $\hat{F}_{5}^{\mathrm{si}}\left(\bar{a}, \ell_{\mu}\right)$ and the (5-loop) $\beta$ function $\bar{\beta}(\bar{a})$ both loose any dependence on $\pi$. This remarkable fact was discovered in [3].

It should be stressed that eventually every separate diagram contributing to $F_{n}$ and $F_{n+1}$ contains the following set of irrational numbers: $\zeta_{3}, \zeta_{4}, \zeta_{5}, \zeta_{6}$ and $\zeta_{7}$ for $n=4, \zeta_{3}, \zeta_{4}$ and $\zeta_{5}$ for $n=3$. Thus, the regularities listed above are quite nontrivial and for sure can not be explained by pure coincidence.

## 2. Hatted representation of p-integrals and its implications

The full understanding and a generic proof of points 1,2 and 3 above have been recently achieved in our work [1]. The main tool of the work was the so-called "hatted" representation of transcendental objects contributing to a given set of p-integrals. Let us reformulate the main results of [1] in an abstract form.

We will call the set of all L-loop p-integrals $\mathscr{P}_{L}$ a $\pi$-safe one if the following is true.
(i) All p-integrals from the set can be expressed in terms of $(M+1)$ mutually independent (and $\varepsilon$-independent) transcendental generators

$$
\begin{equation*}
\mathscr{T}=\left\{t_{1}, t_{2}, \ldots, t_{M+1}\right\} \text { with } t_{M+1}=\pi \tag{2.1}
\end{equation*}
$$

This means that any p-integral $F(\varepsilon)$ from $\mathscr{P}_{L}$ can be uniquely ${ }^{4}$ presented as follows

$$
\begin{equation*}
F(\varepsilon)=F\left(\varepsilon, t_{1}, t_{2}, \ldots, \pi\right)+\mathscr{O}(\varepsilon) \tag{2.2}
\end{equation*}
$$

where by $F$ we understand the exact value of the p-integral $F$ while the combination $\varepsilon^{L} F\left(\varepsilon, \hat{t}_{1}, \hat{t}_{2}, \ldots, \hat{t}_{M}, \pi\right)$ should be a rational polynomial ${ }^{5}$ in $\varepsilon, t_{1} \ldots, t_{M}, \pi$. Every such polynomial is a sum of monomials $T_{i}$ of the generic form

$$
\begin{equation*}
\sum_{\alpha} r_{\alpha} T_{\alpha}, \quad T_{\alpha}=\varepsilon^{n} \prod_{i=1, M+1} t_{i}^{n_{i}} \tag{2.3}
\end{equation*}
$$

[^3]with $n \leq L, n_{i}$ and $r_{\alpha}$ being some non-negative integers and rational numbers respectively. A monomial $T_{\alpha}$ will be called $\pi$-dependent and denoted as $T_{\pi, \alpha}$ if $n_{M+1}>0$. Note that a generator $t_{i}$ with $i \leq M$ may still include explictly the constant $\pi$ in its definition, see below.
(ii) For every $t_{i}$ with $i \leq M$ let us define its hatted counterpart as follows:
\[

$$
\begin{equation*}
\hat{t}_{i}=t_{i}+\sum_{j=1, M} h_{j}(\varepsilon) T_{\pi, j}, \tag{2.4}
\end{equation*}
$$

\]

with $\left\{h_{j}\right\}$ being rational polynomials in $\varepsilon$ vanishing in the limit of $\varepsilon=0$ and $T_{\pi, j}$ are all $\pi$ dependent monomials as defined in (2.3). Then there should exist a choice of both a basis $\mathscr{T}$ and polynomials $\left\{h_{j}\right\}$ such that for every L-loop p-integral $F\left(\varepsilon, t_{i}\right)$ the following equality holds:

$$
\begin{equation*}
F\left(\varepsilon, t_{1}, t_{2}, \ldots, t_{M+1}\right)=F\left(\varepsilon, \hat{t}_{1}, \hat{t}_{2}, \ldots, \hat{t}_{M}, 0\right)+\mathscr{O}(\varepsilon) . \tag{2.5}
\end{equation*}
$$

We will call $\pi$-free any polynomial (with possibly $\varepsilon$-dependent coefficients) in $\left\{t_{i}, i=1, \ldots, M\right\}$.
As we will discuss below the sets $\mathscr{P}_{i}$ with $i=3,4,5$ are for sure $\pi$-safe while $\mathscr{P}_{6}$ highly likely shares the property. In what follows we will always assume that every (renormalized) L-loop p -function as well as ( $\mathrm{L}+1$ )-loop $\overline{\mathrm{MS}} \beta$-functions and anomalous dimensions are all expressed in terms of the generators $t_{1}, t_{2}, \ldots, t_{M+1}$.

Moreover, for any polynomial $P\left(t_{1}, t_{2}, \ldots, t_{M+1}\right)$ we define its hatted version as

$$
\hat{P}\left(\hat{t}_{1}, \hat{t}_{2}, \ldots, \hat{t}_{M}\right):=P\left(\hat{t}_{1}, \hat{t}_{2}, \ldots, \hat{t}_{M}, 0\right)
$$

Let $F_{L}$ is a (renormalized, with $\varepsilon$ set to zero) p-function, $\gamma_{L}$ and $\beta_{L}$ are the corresponding anomalous dimension and the $\beta$-function (all taken in the $L$-loop approximation). The following statements have been proved in [1] under the condition that the set $\mathscr{P}_{L}$ is $\pi$-safe and that both the set $\mathscr{T}$ and the polynomilas $\left\{h_{i}(\varepsilon)\right\}$ are fixed.

## 1. No $-\pi$ Theorem

(a) $F_{L}$ is $p$-free in any (massless) renormalization scheme for which corresponding $\beta$-function and AD $\gamma$ are both $\pi$-free at least at the level of $L+1$ loops.
(b) The scale-invariant combination $F_{L+1}^{s i}$ is $\pi$-free in any (massless) renormalization scheme provided the $\beta$-function is $\pi$-independent at least at the level of $L+1$ loops.

## 2. $\pi$-dependence of L-loop p-functions

If $F_{L}$ is renormalized in $\overline{\text { MS }}$-scheme, then all its $\pi$-dependent contributions can be expressed in terms of $\left.\hat{F}_{L-1}\right|_{\varepsilon=0},\left.\hat{\beta}_{L-1}\right|_{\varepsilon=0}$ and $\left.\hat{\gamma}_{L-1}\right|_{\varepsilon=0}$.

## 3. $\pi$-dependence of L-loop $\beta$-functions and AD

If $\beta_{L}$ and $\gamma_{L}$ are given in the $\overline{\mathrm{MS}}$-scheme, then all their $\pi$-dependent contributions can be expressed in terms of $\left.\hat{\beta}_{L-1}\right|_{\varepsilon=0}$ and $\left.\hat{\beta}_{L-1}\right|_{\varepsilon=0},\left.\hat{\gamma}_{L-1}\right|_{\varepsilon=0}$ correspondingly.

## 3. $\pi$-structure of $\mathbf{3 , 4 , 5}$ and 6 -loop p-integrals

A hatted representation of p-integrals is known for loop numbers $L=3$ [10], $L=4$ [11] and $L=$ 5 [12]. In all three cases it was constructed by looking for such a basis $\mathscr{T}$ as well as polynomials $h_{j}(\varepsilon)$ (see eq. (2.4)) that eq. (2.5) would be valid for sufficiently large subset of $\mathscr{P}_{L}$.

In principle, the strategy requires the knowledge of all (or almost all) L-loop master integrals. On the other hand, if we assume the $\pi$-safeness of the set $\mathscr{P}_{6}$ we could try to fix polynomials $h_{j}(\varepsilon)$ by considering some limited subset of $\mathscr{P}_{6}$.

Actually, we do have at our disposal a subset of $\mathscr{P}_{6}$ due to work [13] where all 4-loop master integrals have been computed up to the transcendental weight 12 in their $\varepsilon$ expansion. As every particular 4-loop p-integral divided by $\varepsilon^{n}$ can be considered as a $(4+n)$ loop p-integral we have tried this subset for $n=2$. Our results are given below (we use even the zetas $\zeta_{4}=\pi^{2} / 90, \zeta_{6}=$ $\pi^{6} / 945, \zeta_{8}=\pi^{8} / 9450$ and $\zeta_{10}=\pi^{10} / 93555$ instead of the corresponding even powers of $\pi$ ).
$\underbrace{\hat{\zeta}_{3}:=\boxed{\zeta_{3}}+\frac{3 \varepsilon}{2} \zeta_{4}}_{L=3} \underbrace{-\frac{5 \varepsilon^{3}}{2} \zeta_{6}}_{\delta(L=4)} \underbrace{+\frac{21 \varepsilon^{5}}{2} \zeta_{8}}_{\delta(L=5)} \quad \underbrace{-\frac{153 \varepsilon^{7}}{2} \zeta_{10}}_{\delta(L=6)}$,
$\underbrace{\hat{\zeta}_{5}:=\overline{\zeta_{5}}+\frac{5 \varepsilon}{2} \zeta_{6}}_{(L=4)} \underbrace{-\frac{35 \varepsilon^{3}}{4} \zeta_{8}}_{\delta(L=5)} \quad \underbrace{+63 \varepsilon^{5} \zeta_{10}}_{\delta(L=6)}$,
$\underbrace{\hat{\zeta}_{7}:=\boxed{\zeta_{7}}}_{L=4} \underbrace{+\frac{7 \varepsilon}{2} \zeta_{8}}_{\delta(L=5)} \quad \underbrace{-21 \varepsilon^{3} \zeta_{10}}_{\delta(L=6)}$,
$\underbrace{\hat{\varphi}:=\boxed{\varphi}-3 \varepsilon \zeta_{4} \zeta_{5}+\frac{5 \varepsilon}{2} \zeta_{3} \zeta_{6}}_{L=5} \quad \underbrace{-\frac{24 \varepsilon^{2}}{47} \zeta_{10}+\varepsilon^{3}\left(-\frac{35}{4} \zeta_{3} \zeta_{8}+5 \zeta_{5} \zeta_{6}\right)}_{\delta(L=6)}$,
$\underbrace{\hat{\zeta}_{9}:=\boxed{\zeta_{9}}}_{L=5} \quad \underbrace{+\frac{9}{2} \varepsilon \zeta_{10}}_{\delta(L=6)}$,

$\underbrace{\hat{\zeta}_{11}:=\zeta_{11}}_{L=6}$,
$\underbrace{\hat{\zeta}_{5,3,3}:=\zeta_{5,3,3}+45 \zeta_{2} \zeta_{9}+3 \zeta_{4} \zeta_{7}-\frac{5}{2} \zeta_{5} \zeta_{6}}_{L=6}$.
Here

$$
\begin{equation*}
\varphi:=\frac{3}{5} \zeta_{5,3}+\zeta_{3} \zeta_{5}-\frac{29}{20} \zeta_{8}=\zeta_{6,2}-\zeta_{3,5} \approx-0.1868414 \tag{3.9}
\end{equation*}
$$

and multiple zeta values are defined as [14]

$$
\begin{equation*}
\zeta_{n_{1}, n_{2}}:=\sum_{i>j>0} \frac{1}{i^{n_{1}} j^{n_{2}}}, \quad \zeta_{n_{1}, n_{2}, n_{3}}:=\sum_{i>j>k>0} \frac{1}{i^{n_{1}} j^{n_{2}} k^{n_{3}}} . \tag{3.10}
\end{equation*}
$$

Some comments on these eqs. are in order.

- The boxed entries form a set of $\pi$-independent (by definition!) generators for the cases of $L=3$ (eq. (3.1)), $L=4$ (eqs. (3.1-3.3), $L=5$ (eqs. (3.1-3.5) and $L=6$ (eqs. (3.1-3.8).
- For $L=5$ we recover the hatted representation for the set $\mathscr{P}_{5}$ first found in [12].
- We do not claim that the generators

$$
\begin{equation*}
\zeta_{3}, \zeta_{5}, \zeta_{7}, \phi, \zeta_{9},\left.\hat{\zeta}_{7,3}\right|_{\varepsilon=0}, \hat{\zeta}_{5,3,3} \text { and } \pi \tag{3.11}
\end{equation*}
$$

are sufficient to present the pole and finite parts of every 6-loop p-integral. In fact, it is not true $[15,16,17]$. However we believe that it is safe to assume that all missing irrational constants can be associated with the values of some convergent 6 -loop p-integrals at $\varepsilon=0$.

## 4. $\pi$-dependence of 7-loop $\beta$-functions and AD

Using the approach of [1] and the hatted representation of the irrational generators (3.11) as described by eqs. (3.1)-(3.8) we can straightforwardly predict the $\pi$-dependent terms in the $\beta$ function and the anomalous dimensions in the case of any 1-charge minimally renormalized field model at the level of 7 loops.

Our results read (the combination $F^{t_{\alpha_{1}} t_{\alpha_{2}} \ldots t_{\alpha_{n}}}$ stands for the coefficient of the monomial $\left(t_{\alpha_{1}} t_{\alpha_{2}} \ldots t_{\alpha_{n}}\right)$ in $F$; in addition, by $F^{(1)}$ we understand $F$ with every generator $t_{i}$ from $\left\{t_{1}, t_{2}, \ldots, t_{M+1}\right\}$ set to zero).
$\gamma_{4}^{\zeta_{4}}=-\frac{1}{2} \beta_{3}^{\zeta_{3}} \gamma_{1}+\frac{3}{2} \beta_{1} \gamma_{3}^{\zeta_{3}}$,
$\gamma_{5}^{\zeta_{4}}=-\frac{3}{8} \beta_{4}^{\zeta_{3}} \gamma_{1}+\frac{3}{2} \beta_{2} \gamma_{3}^{\zeta_{3}}-\beta_{3}^{\zeta_{3}} \gamma_{2}+\frac{3}{2} \beta_{1} \gamma_{4}^{\zeta_{3}}$,
$\gamma_{5}^{\zeta_{6}}=-\frac{5}{8} \beta_{4}^{\zeta_{5}} \gamma_{1}+\frac{5}{2} \beta_{1} \gamma_{4}^{\zeta_{5}}$,
$\gamma_{5}^{\zeta_{3} \zeta_{4}}=0$,
$\gamma_{6}^{\zeta_{4}}=\frac{3}{2} \beta_{3}^{(1)} \gamma_{3}^{\zeta_{3}}-\frac{3}{10} \beta_{5}^{\zeta_{3}} \gamma_{1}-\frac{3}{4} \beta_{4}^{\zeta_{3}} \gamma_{2}+\frac{3}{2} \beta_{2} \gamma_{4}^{\zeta_{3}}-\frac{3}{2} \beta_{3}^{\zeta_{3}} \gamma_{3}^{(1)}+\frac{3}{2} \beta_{1} \gamma_{5}^{\zeta_{3}}$,
$\gamma_{6}^{\zeta_{6}}=-\frac{1}{2} \beta_{5}^{\zeta_{5}} \gamma_{1}-\frac{5}{4} \beta_{4}^{\zeta_{5}} \gamma_{2}+\frac{5}{2} \beta_{2} \gamma_{4}^{\zeta_{5}}+\frac{5}{2} \beta_{1} \gamma_{5}^{\zeta_{5}}+\frac{3}{2} \beta_{1}^{2} \beta_{3}^{\zeta_{3}} \gamma_{1}-\frac{5}{2} \beta_{1}^{3} \gamma_{3}^{\zeta_{3}}$,
$\gamma_{6}^{\zeta_{3} \zeta_{4}}=-\frac{3}{5} \beta_{5}^{\zeta_{3}^{2}} \gamma_{1}+3 \beta_{1} \gamma_{5}^{\zeta_{3}^{2}}$,
$\gamma_{6}^{\zeta_{8}}=-\frac{7}{10} \beta_{5}^{\zeta_{7}} \gamma_{1}+\frac{7}{2} \beta_{1} \gamma_{5}^{\zeta_{7}}$,
$\gamma_{6}^{\zeta_{3} \zeta_{6}}=\gamma_{6}^{\zeta_{4} \zeta_{5}}=0$,
$\gamma_{7}^{\zeta_{4}}=-\frac{1}{4} \beta_{6}^{\zeta_{3}} \gamma_{1}+\frac{3}{2} \beta_{3}^{(1)} \gamma_{4}^{\zeta_{3}}+\frac{3}{2} \beta_{4}^{(1)} \gamma_{3}^{\zeta_{3}}-\frac{3}{5} \beta_{5}^{\zeta_{3}} \gamma_{2}$
$-\frac{9}{8} \beta_{4}^{\zeta_{3}} \gamma_{3}^{(1)}+\frac{3}{2} \beta_{2} \gamma_{5}^{\zeta_{3}}-2 \beta_{3}^{\zeta_{3}} \gamma_{4}^{(1)}+\frac{3}{2} \beta_{1} \gamma_{6}^{\zeta_{3}}$,

$$
\begin{align*}
\gamma_{7}^{\zeta_{6}}= & -\frac{5}{12} \beta_{6}^{\zeta_{5}} \gamma_{1}+\frac{5}{2} \beta_{3}^{(1)} \gamma_{4}^{\zeta_{5}}-\beta_{5}^{\zeta_{5}} \gamma_{2}-\frac{15}{8} \beta_{4}^{\zeta_{5}} \gamma_{3}^{(1)}+\frac{5}{2} \beta_{2} \gamma_{5}^{\zeta_{5}}+\frac{5}{2} \beta_{1} \gamma_{6}^{\zeta_{5}} \\
& +\frac{5}{2} \beta_{1} \beta_{3}^{\zeta_{3}} \beta_{2} \gamma_{1}+\frac{5}{4} \beta_{1}^{2} \beta_{4}^{\zeta_{3}} \gamma_{1}-\frac{15}{2} \beta_{1}^{2} \beta_{2} \gamma_{3}^{\zeta_{3}}+3 \beta_{1}^{2} \beta_{3}^{\zeta_{3}} \gamma_{2}-\frac{5}{2} \beta_{1}^{3} \gamma_{4}^{\zeta_{3}}  \tag{4.11}\\
\gamma_{7}^{\zeta_{3}^{\zeta_{4}}=} & -\frac{1}{2} \beta_{6}^{\zeta_{3}^{2}} \gamma_{1}-\frac{6}{5} \beta_{5}^{\zeta_{3}^{2}} \gamma_{2}+\frac{3}{8} \beta_{4}^{\zeta_{3}} \gamma_{3}^{\zeta_{3}}+3 \beta_{2} \gamma_{5}^{\zeta_{3}^{2}}-\frac{1}{2} \beta_{3}^{\zeta_{3}} \gamma_{4}^{\zeta_{3}}+3 \beta_{1} \gamma_{6}^{\zeta_{3}^{2}},  \tag{4.12}\\
\gamma_{7}^{\zeta_{8}}= & -\frac{7}{12} \beta_{6}^{\zeta_{7}} \gamma_{1}-\frac{7}{5} \beta_{5}^{\zeta_{7}} \gamma_{2}+\frac{7}{2} \beta_{2} \gamma_{5}^{\zeta_{7}}+\frac{7}{12}\left(\beta_{3}^{\zeta_{3}}\right)^{2} \gamma_{1}+\frac{7}{2} \beta_{1} \gamma_{6}^{\zeta_{7}}-\frac{7}{8} \beta_{1} \beta_{5}^{\zeta_{3}^{2}} \gamma_{1} \\
& -\frac{7}{8} \beta_{1} \beta_{3}^{\zeta_{3}} \gamma_{3}^{\zeta_{3}}+\frac{21}{8} \beta_{1}^{2} \gamma_{5}^{\zeta_{3}^{2}}+\frac{35}{8} \beta_{1}^{2} \beta_{4}^{\zeta_{5}} \gamma_{1}-\frac{35}{4} \beta_{1}^{3} \gamma_{4}^{\zeta_{5}},  \tag{4.13}\\
\gamma_{7}^{\zeta_{3} \zeta_{6}}= & -\frac{5}{12} \beta_{6}^{\zeta_{3} \zeta_{5}} \gamma_{1}-\frac{5}{12} \beta_{6}^{\phi} \gamma_{1}-\frac{15}{8} \beta_{4}^{\zeta_{5}} \gamma_{3}^{\zeta_{3}}+\frac{5}{2} \beta_{3}^{\zeta_{3}} \gamma_{4}^{\zeta_{5}}+\frac{5}{2} \beta_{1} \gamma_{6}^{\zeta_{3} \zeta_{5}}+\frac{5}{2} \beta_{1} \gamma_{6}^{\phi},  \tag{4.14}\\
\gamma_{7}^{\zeta_{4} \zeta_{5}}= & -\frac{1}{4} \beta_{6}^{\zeta_{3} \zeta_{5}} \gamma_{1}+\frac{1}{2} \beta_{6}^{\phi} \gamma_{1}+\frac{3}{2} \beta_{4}^{\zeta_{5}} \gamma_{3}^{\zeta_{3}}-2 \beta_{3}^{\zeta_{3}} \gamma_{4}^{\zeta_{5}}+\frac{3}{2} \beta_{1} \gamma_{6}^{\zeta_{3} \zeta_{5}}-3 \beta_{1} \gamma_{6}^{\phi}  \tag{4.15}\\
\gamma_{7}^{\zeta_{10}}= & -\frac{3}{4} \beta_{6}^{\zeta_{9}} \gamma_{1}+\frac{9}{2} \beta_{1} \gamma_{6}^{\zeta_{9}},  \tag{4.16}\\
\gamma_{7}^{\zeta_{4} \zeta_{3}^{2}}= & -\frac{3}{4} \beta_{6}^{\zeta_{3}^{3}} \gamma_{1}+\frac{9}{2} \beta_{1} \gamma_{6}^{\zeta_{3}^{3}},  \tag{4.17}\\
\gamma_{7}^{\zeta_{4} \zeta_{7}}= & \gamma_{7}^{\zeta_{5} \zeta_{6}=\gamma_{7}^{\zeta_{3} \zeta_{8}}=0 .} \tag{4.18}
\end{align*}
$$

The results for $\pi$-dependent contributions to a $\beta$-function are obtained from the above eqs. by a formal replacement of $\gamma$ by $\beta$ in every term. For instance, the 7 -loop $\pi$-dependent contributions read:
$\beta_{7}^{\zeta_{4}}=\frac{3}{8} \beta_{4}^{\zeta_{3}} \beta_{3}^{(1)}+\frac{9}{10} \beta_{2} \beta_{5}^{\zeta_{3}}-\frac{1}{2} \beta_{3}^{\zeta_{3}} \beta_{4}^{(1)}+\frac{5}{4} \beta_{1} \beta_{6}^{\zeta_{3}}$,
$\beta_{7}^{\zeta_{6}}=\frac{5}{8} \beta_{4}^{\zeta_{5}} \beta_{3}^{(1)}+\frac{3}{2} \beta_{2} \beta_{5}^{\zeta_{5}}+\frac{25}{12} \beta_{1} \beta_{6}^{\zeta_{5}}-2 \beta_{1}^{2} \beta_{3}^{\zeta_{3}} \beta_{2}-\frac{5}{4} \beta_{1}^{3} \beta_{4}^{\zeta_{3}}$,
$\beta_{7}^{\zeta_{3} \zeta_{4}}=\frac{9}{5} \beta_{2} \beta_{5}^{\zeta_{3}^{2}}-\frac{1}{8} \beta_{3}^{\zeta_{3}} \beta_{4}^{\zeta_{3}}+\frac{5}{2} \beta_{1} \beta_{6}^{\zeta_{3}^{2}}$,
$\beta_{7}^{\zeta_{8}}=\frac{21}{10} \beta_{2} \beta_{5}^{\zeta_{7}}+\frac{35}{12} \beta_{1} \beta_{6}^{\zeta_{7}}-\frac{7}{24} \beta_{1}\left(\beta_{3}^{\zeta_{3}}\right)^{2}+\frac{7}{4} \beta_{1}^{2} \beta_{5}^{\zeta_{3}^{2}}-\frac{35}{8} \beta_{1}^{3} \beta_{4}^{\zeta_{5}}$,
$\beta_{7}^{\zeta_{3} \zeta_{6}}=\frac{5}{8} \beta_{3}^{\zeta_{3}} \beta_{4}^{\zeta_{5}}+\frac{25}{12} \beta_{1} \beta_{6}^{\zeta_{3} \zeta_{5}}+\frac{25}{12} \beta_{1} \beta_{6}^{\phi}$,
$\beta_{7}^{\zeta_{4} \zeta_{5}}=-\frac{1}{2} \beta_{3}^{\zeta_{3}} \beta_{4}^{\zeta_{5}}+\frac{5}{4} \beta_{1} \beta_{6}^{\zeta_{3} \zeta_{5}}-\frac{5}{2} \beta_{1} \beta_{6}^{\phi}$,
$\beta_{7}^{\xi_{10}}=\frac{15}{4} \beta_{1} \beta_{6}^{\xi_{9}}$,
$\beta_{7}^{\zeta_{4} \zeta_{3}^{2}}=\frac{15}{4} \beta_{1} \beta_{6}^{\zeta_{3}^{3}}$,
$\beta_{7}^{\zeta_{4} \zeta_{7}}=\beta_{7}^{\zeta_{5} \zeta_{6}}=\beta_{7}^{\zeta_{3} \zeta_{8}}=0$.

### 4.1 Tests

With eqs. (4.1)-(4.27) we have been able to reproduce successfully all $\pi$-dependent constants appearing in the $\beta$-function and anomalous dimensions $\gamma_{m}$ and $\gamma_{2}$ of the $O(n) \varphi^{4}$ model which all are known at 7 loops from [17]. In addition, we have checked that the $\pi$-dependent contributions to the terms of order $n_{f}^{6} \alpha_{s}^{7}$ in the the QCD $\beta$-function as well as to the terms of order $n_{f}^{6} \alpha_{s}^{7}$ and of order $n_{f}^{5} \alpha_{s}^{7}$ contributing to the quark mass AD (all computed in $[18,19,20]$ ) are in agreement with constraints (4.19)-(4.27) and (4.10)-(4.18) respectively.

Numerous successful tests at 4,5 and 6 loops have been presented in [1].

## Acknowledgments

We are grateful to E. Panzer and V. Smirnov for useful discussions and good advice.
The work of P.A. Baikov is supported in part by the grant RFBR 17-02-00175A of the Russian Foundation for Basic Research. The work by K. G. Chetykin was supported by the German Federal Ministry for Education and Research BMBF through Grant No. 05H15GUCC1.

## References

[1] P. A. Baikov and K. G. Chetyrkin, The structure of generic anomalous dimensions and no- $\pi$ theorem for massless propagators, JHEP 06 (2018) 141, [1804.10088].
[2] S. G. Gorishny, A. L. Kataev and S. A. Larin, The $\mathscr{O}\left(\alpha_{s}^{3}\right)$ corrections to $\sigma_{\mathrm{tot}}\left(e^{+} e^{-} \rightarrow\right.$ hadrons $)$ and $\sigma\left(\tau \rightarrow v_{\tau}+\right.$ hadrons $)$ in $Q C D$, Phys. Lett. B259 (1991) 144-150.
[3] M. Jamin and R. Miravitllas, Absence of even-integer $\zeta$-function values in Euclidean physical quantities in QCD, Phys. Lett. B779 (2018) 452-455, [1711. 00787 ].
[4] J. Davies and A. Vogt, Absence of $\pi^{2}$ terms in physical anomalous dimensions in DIS: Verification and resulting predictions, Phys. Lett. B776 (2018) 189-194, [1711.05267].
[5] K. G. Chetyrkin, G. Falcioni, F. Herzog and J. A. M. Vermaseren, Five-loop renormalisation of QCD in covariant gauges, JHEP 10 (2017) 179, [1709.08541].
[6] B. Ruijl, F. Herzog, T. Ueda, J. A. M. Vermaseren and A. Vogt, $R^{*}$-operation and five-loop calculations, PoS RADCOR2017 (2018) 011, [1801. 06084 ].
[7] P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, Five-Loop Running of the QCD coupling constant, Phys. Rev. Lett. 118 (2017) 082002, [1606.08659].
[8] F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren and A. Vogt, The five-loop beta function of Yang-Mills theory with fermions, JHEP 02 (2017) 090, [1701. 0140 4].
[9] T. Luthe, A. Maier, P. Marquard and Y. Schröder, The five-loop Beta function for a general gauge group and anomalous dimensions beyond Feynman gauge, JHEP 10 (2017) 166, [1709.07718].
[10] D. J. Broadhurst, Dimensionally continued multiloop gauge theory, hep-th/9909185.
[11] P. A. Baikov and K. G. Chetyrkin, Four-Loop Massless Propagators: an Algebraic Evaluation of All Master Integrals, Nucl. Phys. B837 (2010) 186-220, [1004.1153].
[12] A. Georgoudis, V. Goncalves, E. Panzer and R. Pereira, Five-loop massless propagator integrals, 1802.00803.
[13] R. N. Lee, A. V. Smirnov and V. A. Smirnov, Master Integrals for Four-Loop Massless Propagators up to Transcendentality Weight Twelve, Nucl. Phys. B856 (2012) 95-110, [1108.0732].
[14] J. Blumlein, D. J. Broadhurst and J. A. M. Vermaseren, The Multiple Zeta Value Data Mine, Comput. Phys. Commun. 181 (2010) 582-625, [0907. 2557].
[15] D. J. Broadhurst and D. Kreimer, Knots and numbers in phi**4 theory to 7 loops and beyond, Int. J. Mod. Phys. C6 (1995) 519-524, [hep-ph/9504352].
[16] E. Panzer, Feynman integrals and hyperlogarithms. PhD thesis, Humboldt U., Berlin, Inst. Math., 2015. $1506.07243 .10 .18452 / 17157$.
[17] O. Schnetz, Numbers and Functions in Quantum Field Theory, Phys. Rev. D97 (2018) 085018, [1606.08598].
[18] J. Gracey, The QCD Beta function at $\mathscr{O}\left(1 / N_{f}\right)$, Phys.Lett. B373 (1996) 178-184, [hep-ph/9602214].
[19] M. Ciuchini, S. E. Derkachov, J. Gracey and A. Manashov, Quark mass anomalous dimension at $O(1 / N(f) * * 2)$ in QCD, Phys.Lett. B458 (1999) 117-126, [hep-ph/9903410].
[20] M. Ciuchini, S. E. Derkachov, J. Gracey and A. Manashov, Computation of quark mass anomalous dimension at $O\left(1 / N^{* * 2(f)) ~ i n ~ q u a n t u m ~ c h r o m o d y n a m i c s, ~ N u c l . P h y s . ~ B 579 ~(2000) ~ 56-100, ~}\right.$ [hep-ph/9912221].


[^0]:    Loops and Legs in Quantum Field Theory (LL2018)
    29 April 2018-04 May 2018
    St. Goar, Germany

[^1]:    *Speaker.

[^2]:    ${ }^{1}$ Like quark-quark-qluon vertex in QCD with the external gluon line carrying no momentum.
    ${ }^{2} \mathrm{We}$ assume the use of the dimensional regularization with the space-time dimension $D=4-2 \varepsilon$.
    ${ }^{3}$ For discussion of particular examples of $\pi$-dependent contributions into various p-functions we refer to works [3, 4, 5, 6].

[^3]:    ${ }^{4}$ We assume that $F\left(\varepsilon, t_{1}, t_{2}, \ldots, \pi\right)$ does not contain terms proportional to $\varepsilon^{n}$ with $n \geq 1$.
    ${ }^{5}$ That is a polynomial having rational coefficients.

