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1. Introduction and Preliminaries

Since the seminal calculation of the Adler function at order α3
s [2] it has been known that

p-functions demonstrate striking regularities in terms proportional to π2n, with n being positive

integer. Here by p-functions we understand (MS-renormalized) Euclidean Green functions1 or

2-point correlators or even some combination thereof, expressible in terms of massless propagator-

like Feynman integrals (to be named p-integrals below).

To describe these regularities we need to introduce a few notations and conventions. (In what

follows we limit ourselves by the case of QCD considered in the Landau gauge). Let

Fn(a, ℓµ) = 1+
0≤ j≤i

∑
1≤i≤n

gi, j (ℓµ)
j ai (1.1)

be a p-function, where a = αs(µ)
4π , ℓµ = ln

µ2

Q2 and Q is an (Euclidean) external momentum. The

integer n stands for the (maximal) power of αs appearing in the p-integrals contributing to Fn. The

F without n will stand as a shortcut for a formal series F∞. In terms of bare quantities2

F = Z FB(aB, ℓµ), Z = 1+
1≤ j≤i

∑
i≥1

Zi, j
ai

ε j
, (1.2)

with the bare coupling constant and the corresponding renormalization constant being

aB = µ2εZa a, Za = 1+
1≤ j≤i

∑
i≥1

(

Za

)

i, j

ai

ε j
, (1.3)

( ∂

∂ℓµ
+β a

∂

∂a

)

F = γ F , (1.4)

with the anomalous dimension (AD)

γ(a) = ∑
i≥1

γi ai, γi =−iZi,1. (1.5)

The coefficients of the β -function βi are related to Za in the standard way:

βi = i(Za)i,1 . (1.6)

A p-function F is called scale-independent if the corresponding AD γ ≡ 0. If γ 6= 0 then one can

always construct a scale-invariant object from F and γ , namely:

Fsi
n+1(a, ℓµ) =

∂

∂ℓµ
(lnF)n+1 ≡

(
(

γ(a)−β (a)a ∂
∂a

)

Fn

Fn

)

n+1

. (1.7)

Note that Fsi
n+1(a, ℓµ) starts from the first power of the coupling constant a and is formally composed

from O(αn+1
s ) Feynman diagrams. In the same time is can be completely restored from Fn and the

(n+1)-loop AD γ .

An (incomplete) list of the currently known regularities3 includes the following cases.

1Like quark-quark-qluon vertex in QCD with the external gluon line carrying no momentum.
2We assume the use of the dimensional regularization with the space-time dimension D = 4−2ε .
3For discussion of particular examples of π-dependent contributions into various p-functions we refer to works

[3, 4, 5, 6].
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1. Scale-independent p-functions Fn and Fsi
n with n ≤ 4 are free from π-dependent terms.

2. Scale-independent p-functions Fsi
5 are free from π6 and π2 but do depend on π4.

3. The QCD β -function starts to depend on π at 5 loops only [7, 8, 9] (via ζ4 = π4/90). In

addition, there exits a remarkable identity [1]

β
ζ4

5 =
9

8
β1 β

ζ3

4 , with Fζi = lim
ζi→0

∂

∂ζi

F .

4. If we change the MS-renormalization scheme as follows:

a = ā(1+ c1 ā+ c2 ā2 + c3 ā3 +
1

3

β5

β1

ā4), (1.8)

with c1,c2 and c3 being any rational numbers, then the function F̂ si
5 (ā, ℓµ) and the (5-loop) β -

function β̄ (ā) both loose any dependence on π . This remarkable fact was discovered in [3].

It should be stressed that eventually every separate diagram contributing to Fn and Fn+1 contains

the following set of irrational numbers: ζ3,ζ4,ζ5,ζ6 and ζ7 for n = 4, ζ3, ζ4 and ζ5 for n = 3.

Thus, the regularities listed above are quite nontrivial and for sure can not be explained by pure

coincidence.

2. Hatted representation of p-integrals and its implications

The full understanding and a generic proof of points 1,2 and 3 above have been recently

achieved in our work [1]. The main tool of the work was the so-called “hatted” representation

of transcendental objects contributing to a given set of p-integrals. Let us reformulate the main

results of [1] in an abstract form.

We will call the set of all L-loop p-integrals PL a π-safe one if the following is true.

(i) All p-integrals from the set can be expressed in terms of (M+1) mutually independent (and

ε-independent) transcendental generators

T = {t1, t2, . . . , tM+1} with tM+1 = π. (2.1)

This means that any p-integral F(ε) from PL can be uniquely4 presented as follows

F(ε) = F(ε , t1, t2, . . . ,π)+O(ε), (2.2)

where by F we understand the exact value of the p-integral F while the combination

εL F(ε , t̂1, t̂2, . . . , t̂M,π) should be a rational polynomial5 in ε , t1 . . . , tM,π . Every such polynomial

is a sum of monomials Ti of the generic form

∑
α

rαTα , Tα = εn ∏
i=1,M+1

t
ni

i , (2.3)

4We assume that F(ε, t1, t2, . . . ,π) does not contain terms proportional to εn with n ≥ 1.
5That is a polynomial having rational coefficients.
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with n ≤ L, ni and rα being some non-negative integers and rational numbers respectively. A

monomial Tα will be called π-dependent and denoted as Tπ,α if nM+1 > 0. Note that a generator ti

with i ≤ M may still include explictly the constant π in its definition, see below.

(ii) For every ti with i ≤ M let us define its hatted counterpart as follows:

t̂i = ti + ∑
j=1,M

h j(ε) Tπ, j, (2.4)

with {h j} being rational polynomials in ε vanishing in the limit of ε = 0 and Tπ, j are all π-

dependent monomials as defined in (2.3). Then there should exist a choice of both a basis T

and polynomials {h j} such that for every L-loop p-integral F(ε , ti) the following equality holds:

F(ε , t1, t2, . . . , tM+1) = F(ε , t̂1, t̂2, . . . , t̂M,0)+O(ε). (2.5)

We will call π-free any polynomial (with possibly ε-dependent coefficients) in {ti, i = 1, . . . ,M}.

As we will discuss below the sets Pi with i = 3,4,5 are for sure π-safe while P6 highly

likely shares the property. In what follows we will always assume that every (renormalized) L-loop

p-function as well as (L+1)-loop MS β -functions and anomalous dimensions are all expressed in

terms of the generators t1, t2, . . . , tM+1.

Moreover, for any polynomial P(t1, t2, . . . , tM+1) we define its hatted version as

P̂(t̂1, t̂2, . . . , t̂M) := P(t̂1, t̂2, . . . , t̂M,0).

Let FL is a (renormalized, with ε set to zero) p-function, γL and βL are the corresponding anomalous

dimension and the β -function (all taken in the L-loop approximation). The following statements

have been proved in [1] under the condition that the set PL is π-safe and that both the set T and

the polynomilas {hi(ε)} are fixed.

1. No-π Theorem

(a) FL is p-free in any (massless) renormalization scheme for which corresponding β -function and

AD γ are both π-free at least at the level of L+1 loops.

(b) The scale-invariant combination Fsi
L+1 is π-free in any (massless) renormalization scheme pro-

vided the β -function is π-independent at least at the level of L+1 loops.

2. π-dependence of L-loop p-functions

If FL is renormalized in MS-scheme, then all its π-dependent contributions can be expressed in

terms of F̂L−1|ε=0, β̂L−1|ε=0 and γ̂L−1|ε=0.

3. π-dependence of L-loop β -functions and AD

If βL and γL are given in the MS-scheme, then all their π-dependent contributions can be expressed

in terms of β̂L−1|ε=0 and β̂L−1|ε=0, γ̂L−1|ε=0 correspondingly.

3. π-structure of 3,4,5 and 6-loop p-integrals

A hatted representation of p-integrals is known for loop numbers L= 3 [10], L=4 [11] and L=

5 [12]. In all three cases it was constructed by looking for such a basis T as well as polynomials

h j(ε) (see eq. (2.4)) that eq. (2.5) would be valid for sufficiently large subset of PL.
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In principle, the strategy requires the knowledge of all (or almost all) L-loop master integrals.

On the other hand, if we assume the π-safeness of the set P6 we could try to fix polynomials h j(ε)

by considering some limited subset of P6.

Actually, we do have at our disposal a subset of P6 due to work [13] where all 4-loop master

integrals have been computed up to the transcendental weight 12 in their ε expansion. As every

particular 4-loop p-integral divided by εn can be considered as a (4+ n) loop p-integral we have

tried this subset for n=2. Our results are given below (we use even the zetas ζ4 = π2/90, ζ6 =

π6/945,ζ8 = π8/9450 and ζ10 = π10/93555 instead of the corresponding even powers of π).

ζ̂3 := ζ3 +
3ε

2
ζ4

︸ ︷︷ ︸

L=3

−
5ε3

2
ζ6

︸ ︷︷ ︸

δ (L=4)

+
21ε5

2
ζ8

︸ ︷︷ ︸

δ (L=5)

−
153ε7

2
ζ10

︸ ︷︷ ︸

δ (L=6)

, (3.1)

ζ̂5 := ζ5 +
5ε

2
ζ6

︸ ︷︷ ︸

(L=4)

−
35ε3

4
ζ8

︸ ︷︷ ︸

δ (L=5)

+63ε5ζ10
︸ ︷︷ ︸

δ (L=6)

, (3.2)

ζ̂7 := ζ7
︸ ︷︷ ︸

L=4

+
7ε

2
ζ8

︸ ︷︷ ︸

δ (L=5)

−21ε3ζ10
︸ ︷︷ ︸

δ (L=6)

, (3.3)

ϕ̂ := ϕ −3ε ζ4 ζ5 +
5ε

2
ζ3 ζ6

︸ ︷︷ ︸

L=5

−
24ε2

47
ζ10 + ε3 (−

35

4
ζ3ζ8 +5ζ5ζ6)

︸ ︷︷ ︸

δ (L=6)

, (3.4)

ζ̂9 := ζ9
︸ ︷︷ ︸

L=5

+
9

2
ε ζ10

︸ ︷︷ ︸

δ (L=6)

, (3.5)

ζ̂7,3 := ζ7,3 −
793
94

ζ10 +3ε(−7ζ4ζ7 −5ζ5ζ6)
︸ ︷︷ ︸

L=6

, (3.6)

ζ̂11 := ζ11
︸ ︷︷ ︸

L=6

, (3.7)

ζ̂5,3,3 := ζ5,3,3 +45ζ2ζ9 +3ζ4ζ7 −
5
2
ζ5ζ6

︸ ︷︷ ︸

L=6

. (3.8)

Here

ϕ :=
3

5
ζ5,3 +ζ3 ζ5 −

29

20
ζ8 = ζ6,2 −ζ3,5 ≈−0.1868414 (3.9)

and multiple zeta values are defined as [14]

ζn1,n2
:= ∑

i> j>0

1

in1 jn2
, ζn1,n2,n3

:= ∑
i> j>k>0

1

in1 jn2kn3
. (3.10)

Some comments on these eqs. are in order.
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• The boxed entries form a set of π-independent (by definition!) generators for the cases of

L = 3 (eq. (3.1)), L = 4 (eqs. (3.1—3.3), L = 5 (eqs. (3.1–3.5) and L = 6 (eqs. (3.1—3.8).

• For L = 5 we recover the hatted representation for the set P5 first found in [12].

• We do not claim that the generators

ζ3,ζ5,ζ7,φ ,ζ9, ζ̂7,3|ε=0, ζ̂5,3,3 and π (3.11)

are sufficient to present the pole and finite parts of every 6-loop p-integral. In fact, it is not

true [15, 16, 17]. However we believe that it is safe to assume that all missing irrational

constants can be associated with the values of some convergent 6-loop p-integrals at ε = 0.

4. π-dependence of 7-loop β -functions and AD

Using the approach of [1] and the hatted representation of the irrational generators (3.11) as

described by eqs. (3.1)-(3.8) we can straightforwardly predict the π-dependent terms in the β -

function and the anomalous dimensions in the case of any 1-charge minimally renormalized field

model at the level of 7 loops.

Our results read (the combination F tα1
tα2

...tαn stands for the coefficient of the monomial

(tα1
tα2

. . . tαn
) in F ; in addition, by F(1) we understand F with every generator ti from {t1, t2, . . . , tM+1}

set to zero).

γ
ζ4

4 =−
1

2
β

ζ3

3 γ1 +
3

2
β1γ

ζ3

3 , (4.1)

γ
ζ4

5 =−
3

8
β

ζ3

4 γ1 +
3

2
β2γ

ζ3

3 −β
ζ3

3 γ2 +
3

2
β1γ

ζ3

4 , (4.2)

γ
ζ6

5 =−
5

8
β

ζ5

4 γ1 +
5

2
β1γ

ζ5

4 , (4.3)

γ
ζ3ζ4

5 = 0, (4.4)

γ
ζ4

6 =
3

2
β
(1)
3 γ

ζ3

3 −
3

10
β

ζ3

5 γ1 −
3

4
β

ζ3

4 γ2 +
3

2
β2γ

ζ3

4 −
3

2
β

ζ3

3 γ
(1)
3 +

3

2
β1γ

ζ3

5 , (4.5)

γ
ζ6

6 =−
1

2
β

ζ5

5 γ1 −
5

4
β

ζ5

4 γ2 +
5

2
β2γ

ζ5

4 +
5

2
β1γ

ζ5

5 +
3

2
β 2

1 β
ζ3

3 γ1 −
5

2
β 3

1 γ
ζ3

3 , (4.6)

γ
ζ3ζ4

6 =−
3

5
β

ζ 2
3

5 γ1 +3β1γ
ζ 2

3

5 , (4.7)

γ
ζ8

6 =−
7

10
β

ζ7

5 γ1 +
7

2
β1γ

ζ7

5 , (4.8)

γ
ζ3ζ6

6 = γ
ζ4ζ5

6 = 0, (4.9)

γ
ζ4

7 =−
1

4
β

ζ3

6 γ1 +
3

2
β
(1)
3 γ

ζ3

4 +
3

2
β
(1)
4 γ

ζ3

3 −
3

5
β

ζ3

5 γ2

−
9

8
β

ζ3

4 γ
(1)
3 +

3

2
β2γ

ζ3

5 −2β
ζ3

3 γ
(1)
4 +

3

2
β1γ

ζ3

6 , (4.10)
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γ
ζ6

7 =−
5

12
β

ζ5

6 γ1 +
5

2
β
(1)
3 γ

ζ5

4 −β
ζ5

5 γ2 −
15

8
β

ζ5

4 γ
(1)
3 +

5

2
β2γ

ζ5

5 +
5

2
β1γ

ζ5

6

+
5

2
β1β

ζ3

3 β2γ1 +
5

4
β 2

1 β
ζ3

4 γ1 −
15

2
β 2

1 β2γ
ζ3

3 +3β 2
1 β

ζ3

3 γ2 −
5

2
β 3

1 γ
ζ3

4 , (4.11)

γ
ζ3ζ4

7 =−
1

2
β

ζ 2
3

6 γ1 −
6

5
β

ζ 2
3

5 γ2 +
3

8
β

ζ3

4 γ
ζ3

3 +3β2γ
ζ 2

3

5 −
1

2
β

ζ3

3 γ
ζ3

4 +3β1γ
ζ 2

3

6 , (4.12)

γ
ζ8

7 =−
7

12
β

ζ7

6 γ1 −
7

5
β

ζ7

5 γ2 +
7

2
β2γ

ζ7

5 +
7

12
(β

ζ3

3 )2γ1 +
7

2
β1γ

ζ7

6 −
7

8
β1β

ζ 2
3

5 γ1

−
7

8
β1β

ζ3

3 γ
ζ3

3 +
21

8
β 2

1 γ
ζ 2

3

5 +
35

8
β 2

1 β
ζ5

4 γ1 −
35

4
β 3

1 γ
ζ5

4 , (4.13)

γ
ζ3ζ6

7 =−
5

12
β

ζ3ζ5

6 γ1 −
5

12
β

φ
6 γ1 −

15

8
β

ζ5

4 γ
ζ3

3 +
5

2
β

ζ3

3 γ
ζ5

4 +
5

2
β1γ

ζ3ζ5

6 +
5

2
β1γ

φ
6 , (4.14)

γ
ζ4ζ5

7 =−
1

4
β

ζ3ζ5

6 γ1 +
1

2
β

φ
6 γ1 +

3

2
β

ζ5

4 γ
ζ3

3 −2β
ζ3

3 γ
ζ5

4 +
3

2
β1γ

ζ3ζ5

6 −3β1γ
φ
6 , (4.15)

γ
ζ10

7 =−
3

4
β

ζ9

6 γ1 +
9

2
β1γ

ζ9

6 , (4.16)

γ
ζ4ζ 2

3

7 =−
3

4
β

ζ 3
3

6 γ1 +
9

2
β1γ

ζ 3
3

6 , (4.17)

γ
ζ4ζ7

7 = γ
ζ5ζ6

7 = γ
ζ3ζ8

7 = 0. (4.18)

The results for π-dependent contributions to a β -function are obtained from the above eqs. by

a formal replacement of γ by β in every term. For instance, the 7-loop π-dependent contributions

read:

β
ζ4

7 =
3

8
β

ζ3

4 β
(1)
3 +

9

10
β2β

ζ3

5 −
1

2
β

ζ3

3 β
(1)
4 +

5

4
β1β

ζ3

6 , (4.19)

β
ζ6

7 =
5

8
β

ζ5

4 β
(1)
3 +

3

2
β2β

ζ5

5 +
25

12
β1β

ζ5

6 −2β 2
1 β

ζ3

3 β2 −
5

4
β 3

1 β
ζ3

4 , (4.20)

β
ζ3ζ4

7 =
9

5
β2β

ζ 2
3

5 −
1

8
β

ζ3

3 β
ζ3

4 +
5

2
β1β

ζ 2
3

6 , (4.21)

β
ζ8

7 =
21

10
β2β

ζ7

5 +
35

12
β1β

ζ7

6 −
7

24
β1(β

ζ3

3 )2 +
7

4
β 2

1 β
ζ 2

3

5 −
35

8
β 3

1 β
ζ5

4 , (4.22)

β
ζ3ζ6

7 =
5

8
β

ζ3

3 β
ζ5

4 +
25

12
β1β

ζ3ζ5

6 +
25

12
β1β

φ
6 , (4.23)

β
ζ4ζ5

7 =−
1

2
β

ζ3

3 β
ζ5

4 +
5

4
β1β

ζ3ζ5

6 −
5

2
β1β

φ
6 , (4.24)

β
ζ10

7 =
15

4
β1β

ζ9

6 , (4.25)

β
ζ4ζ 2

3

7 =
15

4
β1β

ζ 3
3

6 , (4.26)

β
ζ4ζ7

7 = β
ζ5ζ6

7 = β
ζ3ζ8

7 = 0. (4.27)
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4.1 Tests

With eqs. (4.1)–(4.27) we have been able to reproduce successfully all π-dependent constants

appearing in the β -function and anomalous dimensions γm and γ2 of the O(n) ϕ4 model which all

are known at 7 loops from [17]. In addition, we have checked that the π-dependent contributions

to the terms of order n6
f α

7
s in the the QCD β -function as well as to the terms of order n6

f α
7
s and of

order n5
f α

7
s contributing to the quark mass AD (all computed in [18, 19, 20]) are in agreement with

constraints (4.19)–(4.27) and (4.10)–(4.18) respectively.

Numerous successful tests at 4,5 and 6 loops have been presented in [1].
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