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1. Introduction

Almost seventy years from the time Feynman Integrals (FI) were first introduced [1–3] and
more than forty-five years since the dimensional regularisation [4] set up the framework for an
efficient use of loop integrals in computing scattering matrix elements, still the frontier of multi-
scale multi-loop integral calculations (maximal both in number of scales and number of loops)
is determined by the planar five-point two-loop on-shell massless integrals [5, 6], recently com-
puted1. On the other hand, in order to keep up with the increasing experimental accuracy as more
data is collected at the LHC, more precise theoretical predictions and higher loop calculations are
required [7].

Feynman graphs (FG) and the associated Feynman Integrals represent the building blocks of
the perturbative expansion in Quantum Field Theory. Although to obtain results relevant for physics
a lot of elements have to be combined, extending from parton-showers and resummation techniques
to fixed-order calculations and parton-distribution functions, it is fair to say that any advancement
seen so far in all these, is based on our knowledge of computing FI or closely related objects.

Scattering matrix elements at tree order (usually Leading Order, LO), where no loop-integrals
appear, are best computed in the general case via off-shell recursive equations2, as well as through
on-shell recurrence in the BCFW approach [11,12]. In a certain sense, a brute force computation of
FG is not the most compact way to represent scattering matrix elements, a notable example being
the Parke–Taylor amplitudes [13].

At the next-to-leading order (NLO), the reduction of one-loop amplitudes to a set of Master
Integrals (MI), a minimal set of FI that form a basis, either relying on unitarity methods [14–
16] or at the integrand level via the OPP method [17, 18], has drastically changed the way NLO
calculations are preformed, resulting in many fully automated numerical tools (some reviews on the
topic are [19–21])3, making the NLO approximation the default precision for theoretical predictions
at the LHC.

In the recent years, progress has been made also towards the extension of these reduction
methods for two-loop amplitudes at the integral [22–31]4 as well as the integrand [32–37]5 level.
Two-loop MI are defined using the integration by parts (IBP) identities [38–40], an indispensable
tool beyond one loop. Contrary to the one-loop case, where MI have been known for a long time
already [41], a complete library of MI at two-loops is still missing. At the moment this is one of
the main obstacle to obtain a fully automated NNLO calculation framework similar to the one-loop
one, that will satisfy the precision requirements at the LHC.

Many methods have been introduced in order to compute FI [42]. The overall most successful
one, is based on expressing the FI in terms of an integral representation over Feynman parameters,
involving the two well-known Symanzik polynomials U and F [43]. The introduction of the sector
decomposition [44–48] method resulted in a powerful computational framework for the numerical
evaluation of FI, see for instance SecDec [49]. An alternative is based on Mellin-Barnes repre-

1Complete results, including physical region kinematics, are published in [6].
2Known as Dyson-Schwinger [8, 9] or Berends-Giele [10] equations.
3See also talks by Philipp Maierhöfer, Max Zoller, Fernando Febres Cordero and Malgorzata Worek
4Talk by Ben Page
5Talks by Simon Badger and William J. Torres Bobadilla
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sentation [50, 51], implemented in [52]6. Nevertheless, the most successful method to calculate
multi-scale multi-loop FI for the time being, is the differential equations (DE) approach [53–57],
which has been used in the past two decades to calculate various MI at two-loops and beyond.
Following the work of refs. [58–60], there has been a consensus, that the so-called multiple poly-
logarithms, more specifically the Goncharov Polylogarithms (GPs), form a functional basis for
many MI, especially those with massless internal propagators. The so-called canonical form of
DE, introduced by Henn [61], manifestly results in MI expressed in terms of GPs 7. Nevertheless
the reduction of a given DE to a canonical form is by no means fully understood, despite recent
efforts [63–65]. Moreover it is well known that when for instance, enough internal masses are
introduced, MI are not anymore expressible in terms of GPs, and in fact a new class of functions
involving elliptic integrals is needed [66–70]8.

In this contribution we present a new approach to compute FI [71]. In Section 2, we present
the basic idea of this method and give some examples. In Section 3, we use this new approach
to obtain known results in an alternative way for two-loop five-point planar MI, and show how
to obtain new results regarding the non-planar two-loop five-point MI. Finally in Section 4, we
discuss the potential use and extension of it.

2. Internal Reduction

As in many areas of science, reducing a given problem to a simpler one, is considered as
a very welcome virtue of any method. In this respect, a Feynman parameter is introduced, in
order to appropriately combine internal propagators of a multi-loop FI. For instance two neighbour
propagators with the same loop momentum are combined to a new one, as follows:

1

· · ·
[
(k+ p1)

2−m2
1

][
(k+ p2)

2−m2
2

]
· · ·

=

1∫
0

dx
1

· · ·
[
(k+q)2−M2

]2
· · ·

(2.1)

with q= xp1+(1− x) p2 and M2 = xm2
1+(1− x)m2

2−x(1− x)(p1− p2)
2. By appropriately choos-

ing the propagators to be combined, the resulting FI, which contains one internal line less, corre-
sponds either to a simpler topology or to a FI with less external lines. In certain cases, it can be
evaluated using IBP identities and the differential equations approach, in a much simpler way than
the original one.

To illustrate the way Eq. (2.1) works, we start with a rather trivial example, shown graphically
below

k

k + p1

p1

p2 p3

p4

=
∫ 1

0
dx

p4 + xp1

p2 + (1− x)p1 p3

(2.2)

6See also https://mbtools.hepforge.org
7For an alternative method in the single scale case see also ref. [62]
8Talks by Claude Duhr, Lorenzo Tancredi and Stefan Weinzierl
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where all external particles momenta are incoming and light-like, p2
i = 0, i = 1, . . . ,4 and all inter-

nal particles are massless, both denoted graphically as single lines, whereas double lines correspond
to external particles carrying momentum that satisfies p2 6= 0 or to internal massive particles. The
dotted line represents a squared propagator. As is well known, the triangle can be expressed in
terms of bubble-integrals using IBP identities,

Tri =− 2(d−3)
S3 (S2−S3)

Bub1 +
2(d−3)

S2 (S2−S3)
Bub2 =

2
ε

[
(−s)−1−ε(1− x)−1−ε

s(1− x)− tx
− (−t)−1−εx−1−ε

s(1− x)− tx

]

with d = 4− 2ε , S2 = (p2 +(1− x)p1)
2 = (1− x)s and S3 = (p4 + xp1)

2 = xt, s = (p1 + p2)
2,

t = (p2 + p3)
2. So the box-integral in Eq. (2.2) is given by,

Box =

1∫
0

dx Tri

=
2
ε2

1
st

[
(−s)−ε

2F1

(
1,−ε;1− ε;

s+ t
t

)
+(−t)−ε

2F1

(
1,−ε;1− ε;

s+ t
s

)]

a result known already for some time [72].

In general the IBP identities are not enough and we have to use the differential equations
approach for the evaluation of the simpler FI. This is the case, for instance, in the following example

x̄p1

p12 − x̄p1

−p12 =
∫ 1

0
dx

p = x̄p1 − xp12

M2 = −x(1− x)m3 (2.3)

In Eq. (2.3), p2
1 = m1, p2

2 = 0, p2
12 = m3 and the internal massive propagator is given by P−1 =

(k2− xp12)
2 + x(1− x)m3. Using the results of [73] we are re-deriving analytically the results

of [74]. Details of the calculation can be found in [71]. Notice that, in this case, despite the fact
that the Internal Reduction produces an x−dependent internal mass, solutions of the sunrise graph,
obtained from DE, do allow for a straightforward analytic evaluation of the two-loop triangle, using
Eq. (2.3).

3. Using Internal Reduction for pentaboxes

It is now a couple of years that we have calculated and provided full analytic results in terms
of GPs for the pentabox planar family [6], shown here.
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x̄p1

x̄p2

−p1234

p123 − x̄p12

p4

The family consists of 74 MI, 3 of them in the highest 8–denominator sector. Using the
simplified differential equations approach (SDE), we have managed to produce an ε–factorized
form of the DE with respect to x̄, with an alphabet of 19 letters (not depending on x̄). Moreover,
using the fact that the x̄ → 1 limit is governed by the corresponding matrix–coefficient of the
1/(1− x̄) term in the DE, we can also derive the result for all external particles carrying light-like
momenta. Although we have been able to verify our results in the Euclidean region comparing
with SecDec, a comparison with physical region kinematics was missing, due to the inadequacy
of SecDec to produce results for the required kinematics.

Internal Reduction is offering a new possibility to compute these pentabox integrals. As shown
in the figure below, we can relate the scalar pentabox MI with a planar double-box integral.

q1 = x̄p1

q2 = x̄p2 q3 = p123 − x̄p12

q4 = p4

q5 = p5 = −p1234

=
∫ 1

0
dx

q1

q2 q3 + (1− x)q4

q5 + xq4

(3.1)
Taking advantage of the fact that we have in our disposal several results on planar double-box
MI [75–77], we were able to numerically integrate Eq. (3.1) and compare with our published re-
sults, obtaining full agreement9. DE are indispensable to obtain this result, since we have to master
the x→ 1 and x→ 0 limits of the double-box family MI in order to perform the integration in
Eq. (3.1). Details of the calculation can be found in [71].

Finally, the scalar non-planar pentabox10 can be related, in the same manner, to the non-planar
double-box family [76–78].

q1

q2

q3

q4

q5

=
∫ 1

0
dx

q1

q2

q3 + (1− x)q4

q5 + xq4

(3.2)

Details of the calculation and results for both physical and Euclidean kinematics and comparison
with SecDec in Euclidean region can be found in [71].

9In the course of the Loops & Legs 2018 Workshop, we have been informed by Nicola Adriano Lo Presti, in a
private communication, that their results [5] are in agreement with ours in the physical region

10See also talk by Johannes Henn
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4. Discussion and Outloook

LHC high-luminosity phase will open a new frontier in precision physics. N3LO results for
Higgs production are already available [79]. Eventually N5−nLO results for 2→ n, n = 1, . . . ,3
processes will be required at the end of the day11. It is therefore necessary to drastically simplify
and to, as possible, fully automatise, the multi-loop calculations.

A new method, named as Internal Reduction, has been presented. We hope that it offers
a realistic alternative in computing multi-scale multi-loop FI. It is based on a one-fold integral
representation over a simpler FI, achieved by reducing one internal line. The method is making use
of the knowledge of the DE through the SDE approach, for the simpler FI, although it can be used
once DE are known in any form.

We are currently investigating the applicability of this method in several MI families, notably
the missing non-planar 5-point two-loop ones. Numerical results are straightforwardly obtainable,
once the DE for the reduced FI are known. Still, we believe that analytic results are possible,
see [71] for details.

There are many possible extensions of the Internal Reduction method, the obvious one is to
reduce more internal lines introducing more Feynman parameters. The efficacy of these ideas is
currently under investigation.
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