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1. Introduction

In the decade to come the LHC will be testing the Standard Model of particle physics (SM)
to an unprecedented level of accuracy. This provides a natural pressure for innovation within the
theory community, as theoretical uncertainties associated to a large amount of observables will
need to be reduced to the few-percent level. To achieve this, both next-to-next-to-leading-order
(NNLO) QCD corrections and next-to-leading-order (NLO) electroweak corrections will need to
be computed for processes involving many scales. Though our capacity to perform the latter type
of corrections has matured over the last few years, the former stills present a variety of challenges.
NNLO QCD corrections are nevertheless highly desirable—relevant processes include 3-jet, H+2-
jet, V +2-jet, tt̄+jet production (for an extended discussion see ref. [1]). For example, the impor-
tance of NNLO QCD corrections to W production with two b jets has been recently highlighted in
ref. [2] where an analysis based on exclusive sums shows that the O(α2

s ) corrections can be sizable
and necessary to stabilize the perturbative series of associated observables, which are relevant for
ongoing and future studies of the b-quark Yukawa coupling (see for example ref. [3, 4]).

NNLO QCD corrections require many ingredients. Among the most complicated is construct-
ing a procedure to handle the different IR-divergent contributions in such a way that the multiple
phase-space integrations required can be achieved numerically. Over the last 15 years a number
of IR subtraction schemes have been developed, which explicitly manifest the cancellation of IR
divergences and are starting to show great potential for automation. Among them are antenna sub-
traction [5, 6], sector improved residue subtraction [7], qT slicing [8] and N-jettiness slicing [9, 10].

Another challenging ingredient which is the focus of these talks, is the computation of two-
loop amplitudes with a higher number of scales. The first calculation of a two-loop five-gluon
amplitude appeared five years ago, for the special case of all positive helicities [11]. Since then, a
number of advances have been made for this particular amplitude [12, 13, 14], followed by further
calculations of the same helicity configuration at higher multiplicity [15, 16]. More recently the
complete set of helicity configurations were also studied with a combination of numeric and ana-
lytic techniques [17], and a follow up including a full reduction to master integrals was presented at
this conference.1 We also highlight the recent appearance of advanced integration-by-parts reduc-
tions for massless two-loop five-point amplitudes of refs. [18, 19]. Related promising techniques
for handling multi-scale two-loop problems have been presented at this conference.2

In principle, these complex amplitude calculations can be performed by constructing the full
set of associated two-loop Feynman diagrams. However, as is well known, the complexity of
computing high-multiplicity processes in this way leads to very large intermediate expressions
in analytic implementations (even at one loop). In this talk, we focus on an approach [20, 21]
that exploits the unitarity method [22, 23, 24, 25] in order to numerically compute multi-loop
amplitudes directly from gauge-invariant building blocks. The method makes use of an advanced
decomposition of the amplitude’s integrand based on master integrands and surface terms, the
latter being constructed from unitarity-compatible integration-by-parts identities. With the master
integrals available,3 we can then obtain the desired amplitudes. As an application, we show a

1See the talk by S. Badger in these proceedings PoS(LL2018)006.
2See the talks of W. Torres Bobadilla PoS(LL2018)036 and K. Larsen PoS(LL2018)064.
3See the talks on these proceedings by J. Henn PoS(LL2018)014 and C. Papadopoulos PoS(LL2018)015.
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computation of the leading-color two-loop five-gluon helicity amplitudes.
The remainder of these proceedings is divided into three sections. In section 2 we describe

details of our computational framework. Section 3 shows our results for the five-gluon helicity am-
plitudes, and finally we conclude in section 4 with an outlook about the prospects of the developed
techniques.

2. Numerical unitarity

In order to perform an amplitude calculation with numerical unitarity we begin by classifying
all propagator structures that can appear in the integrand of the amplitude. These structures are
represented by a set of diagrams ∆ = {Γi}, which naturally can be organized in a hierarchical
way. As an illustrative example, we show in figure 1 the full hierarchy of propagator structures
that appear for planar two-loop four-point massless amplitudes. The top row contains all maximal
diagrams, those with seven propagators, and we go down to the bottom of the hierarchy to the
three-propagator diagram, the so called sunrise diagram.

Figure 1: The planar hierarchy of propagator structures in a 2→ 2 massless amplitude. All edges represent
massless propagators. We include topologically inequivalent diagrams only. We highlight with boxes the
diagrams that do not have associated products of trees. To the left of the dashed line we collect the sub-
hierarchy of propagator structures that have the sunrise as their minimal cut.

To compute the amplitude, we start from the standard decomposition of an amplitude in terms
of master integrals:

A (L) = ∑
Γ∈∆

∑
i∈MΓ

cΓ,i IΓ,i , (2.1)

2
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where L is the number of loops, and MΓ represents the set of master integrals associated to Γ (notice
that it can be empty for many of the diagrams in ∆). The process-dependent coefficients cΓ,i are to
be determined. We note that they depend on the dimensional regularization parameters D and Ds.

Following a similar approach to the one-loop numerical unitarity method [26, 27, 28, 29],
we promote the previous ansatz to the integrand level. That is, denoting the L-loop integrand by
A (L)(`l), with `l = `1, . . . , `L, we write:

A (k)(`l) = ∑
Γ∈∆

∑
i∈MΓ∪SΓ

cΓ,i mΓ,i(`l)

∏ j∈PΓ
ρ j

, (2.2)

where ρ j are the inverse propagators and PΓ represents the set of propagators in diagram Γ. The mΓ,i

functions form a basis parametrizing the integrand associated to the diagram Γ (up to corresponding
power counting). In order for the coefficients of the integrand level masters to correspond to those
in eq. (2.1), the additional terms (with i∈ SΓ) must integrate to zero, and hence we call them surface
terms. We stress that the mΓ,i(`l) functions depend only on the kinematics of the process, and not
on the spin or helicity of the scattering states.

The ansatz (2.2) holds for arbitrary loop momenta `l , and one can exploit this to construct
linear systems of equations from which one can compute all the coefficients cΓ,i. In generalized
unitarity calculations, compact systems of equations can be constructed by taking residues around
the multi-propagator poles corresponding to each diagram Γ,

∑
states

∏
i∈TΓ

A tree
i (`Γ

l ) = ∑
Γ′≥Γ,

i∈M
Γ′∪S

Γ′

cΓ′,i mΓ′,i(`
Γ
l )

∏ j∈Pj ρ j
. (2.3)

On such a residue, the integrand factorizes into a product of trees. The relations obtained from
eq. (2.3) are called cut equations. We note that although starting at two loops certain diagrams do
not have a corresponding product of trees (e.g. the boxed ones in figure 1), following the procedure
described in ref. [30] one can always find enough cut equations to solve for all coefficients.

Master-surface decompositions

The key component in writing down the integrand ansatz (2.2) is a complete set of surface
terms for each set of propagator structures Γ. Precisely, one needs to construct the full set of mΓ,i

which satisfy

0 =
∫
[dD`l]

mΓ,i

∏ j∈PΓ
ρ j

, with [dD`l]≡
L

∏
l=1

dD`l , (2.4)

where the mΓ,i are naturally polynomials in the loop momenta. The construction of such a set of
surface terms follows the description in [20, 21, 31]. We start by writing the integration-by-parts
(IBP) relation, ∫

[dD`l]∑
k

∂

∂`ν
k

[
uν

k

∏ j∈PΓ
ρ j

]
= 0. (2.5)

We note that the differential operator in eq. (2.5) will in general generate terms with higher propa-
gator power. In order to account for this mismatch between eqs. ( 2.4) and (2.5) we choose vectors

3
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uν
k that preserve the propagator structure associated to Γ. This is ensured by defining the so called

IBP-generating vectors [32] according to:

uν
k

∂

∂`ν
k

ρ j = f jρ j, ∀ j ∈ PΓ, (2.6)

where 1 ≤ k ≤ L and there is no sum over j. We require the f j functions to be polynomials in the
loop momentum components, which we parametrize with a convenient set of variables.

To find the necessary IBP-generating vectors, we start from the ansatz

uν
k

∂

∂`ν
k
=
(

uloop
ka `ν

a +uext
kc pν

c

)
∂

∂`ν
k
, (2.7)

where the labels a and c are summed over. Then eq. (2.6) becomes [21]:

(
uloop

ka `ν
a +uext

kc pν
c

)
∂

∂`ν
k


ρ j(1)

ρ j(2)
...

ρ j(|Γ|)

−


f j(1)ρ j(1)

f j(2)ρ j(2)
...

f j(|Γ|)ρ j(|Γ|)

= 0 . (2.8)

This is a polynomial relation, known as a syzygy equation, which can be solved using algorithms
from computational algebraic geometry. We use the software Singular [33] to find solutions for
all required diagrams in our calculations. Analytic solutions can be found in under a second for the
most complicated case necessary for the results in section 3.

As a simple example of a surface term let us consider this procedure in the case of the one-loop
one-mass triangle diagram with propagators and external kinematics given by

ρ1 =(`+ p1)
2, ρ2 = `2, ρ3 = (`− p2)

2,

p2
1 = p2

2 = 0, (p1 + p2)
2 = s.

(2.9)

We find that there is a single generating vector,

uν = uext
1 pν

1 +uext
2 pν

2 +uloop`ν

uν = (ρ3−ρ2)pν
1 +(ρ1 +ρ2)pν

2 +(−s+2ρ3−2ρ2)`
ν .

(2.10)

As this satisfies eq. (2.6), the result of inserting this expression into eq. (2.5) produces a result with
no raised propagator powers,

0 =
∫

dD`
∂

∂ lν

uν

ρ1ρ2ρ3
=
∫

dD`
1

ρ1ρ2ρ3
[−(D−4)s−2(D−3)ρ2 +2(D−3)ρ3] . (2.11)

This relation can then be used either as a surface term, or solved to obtain the well known IBP
relation that relates the scalar triangle to the scalar bubble. Techniques for analytically solving a
system of surface terms to generate IBP relations are explored in [34].

Once a set of IBP-generating vectors is produced for a given diagram, a full decomposition
{mΓ,i} is achieved by multiplying them with a complete set of irreducible numerators respecting
power counting [31], up until the dimension of the space SΓ is filled. The complement of the space
can then be filled with independent insertions to produce the corresponding master integrands in
MΓ. The full decomposition of all planar five-point massless amplitudes in C++ code takes about
3.5MB of data, and we expect it to be possible to construct even more compact expressions in the
future.

4
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Numerical unitarity and finite fields

In recent years it has been demonstrated that so-called “finite fields” can aid in the calcula-
tion of multi-loop scattering amplitudes [35, 36]. By exploiting their mathematical structure, one
can use computer integers to obtain exact results in calculations involving only field operations.
In contrast to more commonly seen floating-point numerics, it is not possible to solve arbitrary
polynomial equations and this presents challenges for constructing a numerical unitarity approach,
many of which were solved in [36].

In the numerical unitarity method it is necessary to use loop momenta satisfying the on-shell
conditions associated to each of the propagator structures Γ. As these are a system of simultaneous
quadratic equations this is a non-trivial exercise when employing finite fields. To parametrize these
“on-shell phase spaces” we employ an adaptation of the van Neerven-Vermaseren basis [37]. We
begin by parametrizing the loop momentum of each strand in the given diagram `l (with l = 1,2
for all factorized (one-loop squared) diagrams and l = 1,2,3 otherwise) as [31, 20, 21]:

`l = ∑
j∈Bp

l

v j
l rl j + ∑

j∈Bt
l

v j
l α

l j + ∑
i∈Bct

ni

(ni)2 α
li + ∑

i∈Bε

ni
µ

i
l ,

rl j =−1
2
(ρl j− (ql j)

2−ρl( j−1)+(ql( j−1))
2) ,

µll ≡ µl ·µl = ρl0−
3

∑
ν=0

`ν
l `l ν ,

(2.12)

where the index sets Bp
l , Bt

l , Bct and Bε have the following physical interpretation: Bp
l is the physical

space spanned by the momenta attached to the strand l; Bct is the physical (4-D) common transverse
space (transverse to all Bp

l ’s); Bt
l is the transverse space to Bp

l not overlapping Bct ; and Bε is the
extra dimensional D−4 space. The ql j are linear combinations of external momenta. The vectors
v j

l are a basis of the physical scattering plane chosen to be dual to the external momenta, and the ni

are an orthogonal basis of the space transverse to the physical scattering space.
In this coordinate system, it is trivial to satisfy the on-shell conditions by setting the associ-

ated propagator variables ρ to 0. Further, it is clear that for any finite field valued choice of the
irreducible scalar products α , the 4-dimensional components of the loop momenta also belong to
the finite field. In order to treat the typically algebraic valued (D−4) dimensional components of
the loop momenta, µi, we represent them abstractly, taking the µi themselves as basis vectors,

`
(D−4)
l = wl,1µ1 +wl,2µ2. (2.13)

This choice must then be respected by the scalar product, that is

`r · `s = `4
r · `4

s −
2

∑
i, j=1

wr
i w

s
jµi j. (2.14)

A further complexity when performing unitarity-based computation in finite fields, is the han-
dling of the internal states that appear on a cut propagator. In these states, normalization factors
appear that cannot be represented in the finite field. Instead of state sums, we insert a light-cone
projector operator in the Ds-dimensional space of the polarization vectors

Pµν

l =−gµν +
`

µ

l ην +ηµ`ν
l

η · `l
, (2.15)

5
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where η is an arbitrary light-like reference vector with rational components (which can of course
be represented in the finite field) and that must fulfil η · `l 6= 0 and η · µi = 0. Although this is a
sound solution, we have also implemented modified physical states for performing the calculations
as it is more efficient for larger values of Ds. In this way, intermediate square roots can be avoided
in a gluonic numerical unitarity calculation. More details are given in [21].

3. The planar two-loop five-gluon helicity amplitudes

The planar diagram hierarchy for two-loop five-point massless amplitudes is comprised of 60
topologically independent diagrams, in which 25 master integrals appear. In figure 2 we show the
subset of diagrams with master integrals and their corresponding multiplicity. In total, considering
all permutations of the external legs maintaining the cyclic order, we need to compute 155 integral
coefficients.

3 masters

3 masters 2 masters

2 masters 2 masters 1 master 1 master

1 master 1 master 1 master 2 masters 1 master

1 master 1 master 1 master 1 master

1 master

Figure 2: Propagator structures with master integrals for massless two-loop five-point amplitudes.

We present results for the four independent helicity configurations (up to cyclic permutations
and parity transformations) that appear for the scattering of five gluons. We include all-plus and
single-minus helicity configurations, though they are not necessary for a potential NNLO QCD

6
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calculation of three-jet production, as their corresponding tree-level amplitudes vanish. The results
we present for the amplitudes are obtained in the Euclidean phase-space point

p1 =

(
1
2
,

1
16

,
i

16
,
1
2

)
, p2 =

(
−1

2
,0,0,

1
2

)
, p3 =

(
9
2
,−9

2
,
7i
2
,
7
2

)
,

p4 =

(
−23

4
,
61
16

,−131i
16

,−37
4

)
, p5 =

(
5
4
,
5
8
,
37i
8
,
19
4

)
,

(3.1)

with the corresponding invariants s12 = −1, s23 = −8, s34 = −10, s45 = −7, s51 = −3. We set
the renormalization scale µ to µ = 1. We present results in the ’t Hooft-Veltman scheme for
dimensional regularization [38]. As our coefficients have been computed in an exact manner, the
numerical precision of our results is only limited by the precision to which the analytic expressions
of the integrals are computed [39, 40]. For the evaluation of the generalized polylogarithms we
employ GiNaC [41].

A (2)/A (norm) ε−4 ε−3 ε−2 ε−1 ε0

(1+,2+,3+,4+,5+) — — -5.0000000 -3.89317903 5.98108858
(1−,2+,3+,4+,5+) — — -5.0000000 -16.3220021 -10.3838132
(1−,2−,3+,4+,5+) 12.50000 25.462469 -1152.8431 -4072.9383 -3637.2496
(1−,2+,3−,4+,5+) 12.50000 25.462469 -6.1216296 -90.221842 -115.78367

Table 1: Numerical results for all types of helicity configurations of the two-loop five-gluon amplitudes.
For the amplitudes with vanishing trees, we set A (norm) = A (1)(ε = 0), and for the MHV configurations
A (norm) = A (0). Details are discussed in the text.

In table 1 we show our results for the helicity amplitudes. The results for amplitudes that
vanish at tree-level have been normalized to A (norm) = A (1)(ε = 0), that is to the corresponding
(finite) one-loop amplitudes at order ε0. The other amplitudes are normalized to the corresponding
tree-level amplitudes. By this choice of normalization we remove any unphysical phase and expose
more clearly the structure of the infrared poles. All infrared poles have been successfully checked
against the expected results [42]. Furthermore, we have cross-checked against the known all-plus
five-point results [11, 12, 13, 14] as well as validated the results of [17].

Obtaining the results in table 1 requires a large number of operations, including the sampling
of a large number of trees and of the integrand function bases. This is performed over ten values
of D and three values of Ds to reconstruct the dependence on the regulators. Although we have
implemented structure for information caching, this nevertheless amounts to an under three-minute
calculation for the most complex helicity structure in a single finite field with a single-threaded
calculation performed on an i7 Intel processor. We expect improvements in the efficiency of the
calculation in the future, and we have also explored several parallelization strategies that can scale
considerably computation times.

4. Outlook

We have presented the first calculation of a physically-relevant two-loop five-point amplitude
with a full reduction to master integrals. The computation of the integral coefficients was achieved

7
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with the recently developed multi-loop numerical unitarity method, which exploits an integrand
decomposition based on master integrands and surface terms. Importantly, it now feasible to as-
semble our amplitudes into squared matrix elements which can then be integrated over the physical
phase space.

It is well known that unitarity-based techniques have good scaling properties as a function
of the number of external legs (and also of the number of loops) making them very suitable for
studying generic scattering amplitudes in field theories. While computing our results for four-point
and five-point amplitudes, we observed that even at this early stage of the new developments, the
computation of six-point two-loop amplitudes is within reach. Of course, these cases also pose the
challenge of computing the corresponding master integrals, but we expect this to be possible in the
near future.

Although gluon amplitudes are an excellent playground, we look forward to apply our tech-
niques to more generic processes that can have interesting phenomenological applications. This
includes processes with quarks, leptons and electro-weak bosons. Adding additional scales, for
example by having external massive particles, poses only minor problems.

We have for the first time implemented an approach to reduce a full amplitude to master inte-
grals employing finite field arithmetics. Such an approach holds several advantages, including the
possibility of obtaining exact results for the integral coefficients when using rational phase-space
points and exploiting integer-based operations for which modern CPUs are extremely efficient. For
future applications to phenomenological calculations, we envisage a hybrid approach that makes
use of both exact and floating point operations.

Another potential application of our exact integral coefficients is the exploration of the analyti-
cal structure of the amplitudes. Techniques for multivariate functional reconstruction have recently
generated a lot of interest [36], which, when combined with fast amplitude evaluations, open a path
towards obtaining analytic results for the amplitudes.

We have developed a computational framework for multi-loop numerical unitarity which we
plan to make public to the wider high-energy physics community in the near future. We are plan-
ning to release the implementation in phases, starting with a version that gives access to the am-
plitudes that we have computed. Over time, we hope to provide more generic two-loop matrix
elements that can be used for phenomenologically-relevant NNLO QCD computations.
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