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1. Introduction

The increasing precision delivered by the experiments at the LHC puts the Standard Model to
more and more stringent tests. To keep up with the shrinking experimental uncertainties, theory
predictions for Standard Model processes also need to be calculated at higher orders in perturbation
theory. For many processes this means that they have to be calculated at next-to-next-to-leading
order (NNLO) of quantum chromodynamics (QCD). While a growing number of processes is al-
ready available at this order – and some at even higher orders – a level of automation comparable
to the situation at next-to-leading order (NLO) has not yet been reached.

One of the ingredients necessary for NNLO QCD predictions is a procedure to deal with
infrared singularities of additional real emissions, which cancel against corresponding singulari-
ties from virtual corrections for infrared safe observables [1, 2]. Since the phase space integrals
are usually solved via numerical integration, these infrared divergences have to be isolated and
cancelled before the numerical treatment. Over the last few decades, a number of schemes and
techniques have been developed for this task. At NLO the most commonly used general schemes
are the Catani-Seymour dipole subtraction [3, 4], the Frixione-Kunszt-Signer (FKS) scheme [5, 6]
and the Nagy-Soper scheme [7–9]. Beyond NLO, there has been a lot of activity in the develop-
ment and application of general NNLO schemes, which includes Antenna Subtraction [10–49], the
CoLoRfulNNLO scheme [50–60], qT -slicing [61–75], N-jettiness slicing [76–85], sector-improved
residue subtraction [86–106], the Projection-to-Born method [107, 108], Local Analytic Sector
Subtraction [109–111] and Geometric IR subtraction [112].

Here, we discuss two new aspects of the sector-improved residue subtraction scheme. After
reviewing the basic structure of the scheme in Sec. 2, we present in Sec. 3 a new phase space
construction with the goal of minimizing the number of distinct subtraction kinematics. The new
phase space construction necessitates the rederivation of the corrections for the ’t Hooft-Veltman
scheme which allows for a four-dimensional treatment of the resolved particles. We sketch their
derivation in Sec. 4 before we conclude in Sec. 5.

2. Sector-improved residue subtraction scheme

In order to establish the notation, we briefly review the basic structure of the sector-improved
residue subtraction scheme. The starting point is the hadronic cross-section for two incoming
hadrons h1,2 with momenta P1,2, respectively, which can be written as

σh1h2(P1,P2) = ∑
a,b

∫∫ 1

0
dx1dx2 fa/h1(x1,µ

2
F) fb/h2(x2,µ

2
F)σ̂ab(x1P1,x2P2;αs(µ

2
R),µ

2
R,µ

2
F) , (2.1)

where fa/h are the parton distribution functions for parton a inside the hadron h. The partonic
cross-section σ̂ab can be expanded perturbatively in the strong coupling αs

σ̂ab = σ̂
(0)
ab + σ̂

(1)
ab + σ̂

(2)
ab +O

(
α

3
s
)
. (2.2)

At leading order (LO) there is only the Born contribution σ̂
(0)
ab = σ̂B, whereas we can distinguish

three contributions at NLO based on the number of final state particles, initial state convolutions
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and loops,

σ̂
(1)
ab = σ̂

R + σ̂
V + σ̂

C . (2.3)

For the following discussion, we mostly concentrate on the NNLO part σ̂
(2)
ab , for which we find five

contributions

σ̂
(2)
ab = σ̂

RR + σ̂
RV + σ̂

VV + σ̂
C1 + σ̂

C2 . (2.4)

Schematically, we can write these contributions as

σ̂
RR =

1
2ŝ

∫
dΦn+2〈M (0)

n+2 |M
(0)
n+2〉Fn+2 , σ̂

C1 = (single convolution)Fn+1 ,

σ̂
RV =

1
2ŝ

∫
dΦn+12Re〈M (0)

n+1 |M
(1)
n+1〉Fn+1 , σ̂

C2 = (double convolution)Fn ,

σ̂
VV =

1
2ŝ

∫
dΦn

(
2Re〈M (0)

n |M (2)
n 〉+ 〈M (1)

n |M (1)
n 〉
)

Fn ,

where dΦn denotes the n-particle phase space integral, ŝ is the partonic centre-of-mass energy and
|M (`)

n 〉 is the `-loop amplitude for the n-particle process. The C1 and C2 contributions contain
convolutions with the splitting functions from initial state factorisation and we refrain from pre-
senting them explicitly for brevity. Their explicit structure can be found, e.g., in [88]. Finally, each
contribution contains a measurement function Fn, which defines the observable under consideration
(e.g. via jet algorithms, cuts or histogramming). It has to ensure infrared safety of the observable,
i.e. if a particle of a n+ 2 particle configuration becomes unresolved, Fn+2 has to approach Fn+1

in this limit and similarly for Fn+1 and Fn, which have to coincide if a particle of the n+1 particle
configuration becomes unresolved. Moreover, the measurement functions turn out to be a powerful
tool for the construction of the subtraction scheme in four dimensions, as will be discussed Sec. 4.

Since the aim of a subtraction scheme is to make the cancellation of the infrared singularities
explicit, we first have to expose the singularities in an easily accessible way. The central idea of
the scheme is to use sector decomposition [113–115] to extract the divergences. Thus, we have to
partition the phase space into sectors and parametrise each sector such that the divergences occur
at the boundaries of the parameters. As a first step, to simplify the singularity structure, we split
up the phase space into sectors using a partition of unity, similar to the FKS construction. For
example, the double real phase space can be partitioned using

1 = ∑
i, j

[
∑
k

Si j,k +∑
k,l

Si,k; j,l

]
. (2.5)

Here, each Si j,k singles out the soft singularities of partons i and j as well as the collinear singular-
ities of any combination of partons i, j and k, while it regulates all other infrared singular limits by
tending to zero fast enough. The terms with Si j,k are called triple collinear sectors. Similarly, Si,k; j,l

allows the soft limits of partons i and j and the pairwise collinear limits of partons i and k and
partons j and l. These are the double collinear sectors. In each of these sectors up to two partons
(i, j) are allowed to become unresolved and we denote their momenta by ui in the following. One
or two partons (k, l) take the role of a reference momentum for the collinear limits to which the
unresolved partons can become collinear. We denote their momenta by ri.
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Next, we prepare the factorisation of the double soft limits by ordering the energies of the
unresolved partons in each sector with another partition of unity,

1 = θ(u0
1−u0

2)+θ(u0
2−u0

1) . (2.6)

As the infrared singularities correspond to divergences of the matrix elements when energies or
angles between parton momenta vanish, it makes sense to parametrise the phase space of the unre-
solved momenta ui in terms of energy and angle variables. We choose

η̂i =
1
2
(1− cosθir) , ξ̂i =

u0
i

u0
i,max

, (2.7)

where cosθir is the angle between parton i and its reference parton and u0
i,max is the maximal energy

allowed for parton i. Depending on the sector it may be necessary to introduce a final partition of
unity to be able to remap the collinear divergences to parameter boundaries. The triple collinear
sectors, for example, are decomposed into three subsectors according to

1 = θ

(
0≤ η̂2 ≤

η̂1

2

)
︸ ︷︷ ︸

S1

+θ

(
0≤ η̂1 ≤

η̂2

2

)
︸ ︷︷ ︸

S23

+θ

(
η̂1

2
≤ η̂2 ≤ η̂1

)
︸ ︷︷ ︸

S4

+θ

(
η̂2

2
≤ η̂1 ≤ η̂2

)
︸ ︷︷ ︸

S5

. (2.8)

Compared to the construction of [88] there is one less subsector: We have merged subsectors S2

and S3 into one subsector S23 like it was suggested in [100] since the soft and collinear limits
factorise independently. For each of these subsectors there then exists a reparametrisation of the
energy and angle variables which maps the singularities to the parameter boundary at zero and
factorises overlapping singularities. As an example, we take the first subsector S1 for which the
final parametrisation reads

η̂1 = η1 , η̂2 =
η1η2

2
, ξ̂1 = ξ1 , ξ̂2 = ξ1ξ2ξ2,max . (2.9)

At this point it is possible to construct subtraction terms for each sector and subsector sepa-
rately by using the soft and collinear factorisation formulae of QCD, parametrising them with the
variables discussed above and applying the identity (in the distributional sense)

1
x1+bε

=−δ (x)
bε

+

[
1

x1+bε

]
+

. (2.10)

Here, [ f (x)]+ denotes plus distributions which are defined as∫ 1

0
dx[ f (x)]+g(x) =

∫ 1

0
dx( f (x)g(x)− f (x)g(0)) . (2.11)

This suffices since QCD matrix elements only diverge as x−1−biε
i in the energy and angle variables

xi. A slight generalisation of the above prescription is necessary for one-loop matrix elements
since they have several different scaling behaviours at the same time, see [88] for details. This
prescription yields three terms for each singular variable: We call the first term on the right-hand
side of Eq. (2.11) regular term, the second term subtraction term and the first term in Eq. (2.10)
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pole term. Only the pole term contains explicit poles in ε and the combination of the regular
and subtraction terms is integrable in the variable x. To obtain the residues of the collinear and
soft singularities for the pole and subtraction terms, we have to employ the standard factorisation
formulae of QCD which are known to at least NNLO in the literature [52, 87, 116–132].

Finally, let us establish some notation in order to further subdivide the cross-section contribu-
tions. A more precise and detailed discussion can be found in [88]. At NLO, we can split the real
contribution σ̂R according to regular and subtraction terms, σ̂R

F , and pole terms σ̂R
U and the virtual

contribution σ̂V into a finite remainder σ̂V
F and pole terms σ̂V

U . Only the finite remainder involves
loop matrix elements. Similarly, we subdivide the NNLO contributions as follows:

σ̂
RR = σ̂

RR
F + σ̂

RR
SU + σ̂

RR
DU , σ̂

RV = σ̂
RV
F + σ̂

RV
FR + σ̂

RV
SU + σ̂

RV
FR , σ̂

C1 = σ̂
C1
SU + σ̂

C1
DU , (2.12)

σ̂
VV = σ̂

VV
F + σ̂

VV
FR + σ̂

VV
F , σ̂

C2 = σ̂
C2
FR + σ̂

C2
DU , (2.13)

The double real part, σ̂RR
F , contains the regular and subtraction terms of the full n+ 2 particle

configurations and the single and double unresolved parts, σ̂RR
SU and σ̂RR

DU, contain pole terms (and
their subtraction terms) which have n+ 1 and n particles configurations, respectively. In the case
of the real-virtual contribution, we distinguish the full finite remainder σ̂RV

F which contains regular
and subtraction terms for the n + 1 configuration with one-loop matrix elements, the one-loop
finite remainder pole terms σ̂RV

FR which have n particle kinematics but contain loop corrections,
and n+ 1 and n particle tree-level terms σ̂RV

SU and σ̂RV
DU. A similar decomposition applies for the

double virtual part, where all terms have n particle kinematics, but σ̂VV
F is the full two-loop finite

remainder, σ̂VV
FR are the pole terms with one-loop matrix elements and σ̂VV

DU are the pole terms with
tree-level matrix elements. The convolution contribution σ̂C1 is organised into single and double
unresolved contributions according to the final state multiplicity and for σ̂C2 we distinguish parts
with one-loop matrix elements (σ̂C2

FR ) and parts with only tree-level matrix elements (σ̂C2
DU).

3. Improved phase space construction

The original phase space construction presented in [86] was formulated in conventional di-
mensional regularisation (CDR) in d space-time dimensions [133–137]. It was reformulated in
four dimensions using the ’t Hooft-Veltman scheme in [88]. This construction still leaves room for
improvements. In particular, the number of distinct kinematic configurations for the subtraction
terms is not minimal. This leads to problems with misbinning: As in any subtraction scheme, the
event and its subtraction events have different kinematics and, therefore, can contribute to different
bins of histogrammed distributions. This is called misbinning. The configurations only have to
coincide in the singular limits in order to cancel each other and guarantee integrability. Far away
from singular limits misbinning is of no concern. Close to the singular limits, on the other hand, the
weights of the event and its subtraction events become large and have opposite signs. Thus, if mis-
binning occurs close to a singular limit, it can spoil the numerical convergence of the Monte Carlo
integration. Therefore, it is desirable to minimize the number of distinct subtraction kinematics as
this reduces the probability of configurations ending up in different bins.

With this idea in mind, let us reexamine the basic steps of the phase space construction
from [88]. There, the construction of a n+2 particle configuration starts with the two unresolved
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momenta u1,2 subject only to the constraints imposed by the available energy. Afterwards, the re-
maining phase space is filled with an n particle configuration for the corresponding Born process.
As an example, let us consider the configurations of the first triple collinear subsector S1. For each
limit, we list the observable momenta (i.e., soft momenta are removed and collinear momenta have
to be summed) and ellipses denote the remaining momenta of the Born process.

regular u2 soft u1,u2 soft r ‖ u2 r ‖ u1 ‖ u2

{r,u1,u2, . . .} {r,u1, . . .} {r, . . .} {r+u2,u1, . . .} {r+u1 +u2, . . .}

Since the Born configuration explicitly depends on u1,2, these five configurations do not agree in
general.

The idea of the improved phase space construction is now to guarantee a relation between
these limiting configurations. In particular, we want to achieve that the single unresolved config-
urations ({r,u1, . . .} and {r + u2,u1, . . .}) and the double unresolved configurations ({r, . . .} and
{r+u1 +u2, . . .}) agree, thereby reducing the number of distinct configurations from five to three.
To this end, in the new phase space construction, we start by generating a Born configuration, then
add the unresolved momenta ui and finally adjust the Born configuration to restore momentum
conservation.

The details of this construction will be presented elsewhere, but the main steps (for final state
references) are summarised here. Similar ideas can already be found in [138,139]. In the following
P and P̃ denote the total initial state momentum of the full and the Born configurations. We start by
postulating a mapping from the n+2 particle configuration {P,r j,uk, . . .} to the Born configuration
{P̃, r̃ j, . . .} and then specify additional requirements on the mapping to make it unique:

• The mapping must keep the direction of the reference momentum r fixed.

• The mapping must be invertible for fixed uk, {P̃, r̃ j,uk, . . .}→ {P,r j,uk, . . .}. Thus, once we
specify the Born configuration and the uk, we can find the n+2 particle configuration.

• The mapping must preserve the invariant mass of the remaining Born configuration, q2 = q̃2,
with q̃ = P̃−∑

n f r
j=1 r̃ j and q = P−∑

n f r
j=1 r j−∑

nu
k=1 uk, where n f r is the number of reference

partons in the final state and nu denotes the number of unresolved partons.

An algorithm that fulfils these requirements is:

1. Generate a Born phase space configuration. One or two of these momenta are picked as
reference momenta r̃ j according to the sector we consider.

2. Generate unresolved momenta uk, subject only to constraints on their energy. Inserting the
unresolved momenta of course violates momentum conservation, which has to be restored in
the next two steps.

3. Rescale the reference momenta, e.g., r = xr̃, where the factor x can be found from momen-
tum conservation together with the requirement q2 = q̃2. Rescaling the massless reference
momentum keeps it on-shell and fulfils the condition of leaving the direction unchanged.

5
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4. Apply a Lorentz transformation to the non-reference final state momenta of the Born con-
figuration to restore momentum conservation – this of course preserves their total invariant
mass q̃2.

5. Multiply the phase space weight by the Jacobian of the transformations.

We basically keep the parametrisations in the subsectors as in [88], but for subsectors S4 and S5,
where the two unresolved partons u1 and u2 can become collinear to each other, we choose an
energy parametrisation, which parametrises the sum of the energies u0

1 + u0
2 and their ratio. Since

the relations fixing this procedure (momentum conservation and q2 = q̃2) only depend on the sum
(for final state references) or difference (for initial state references) for the unresolved and resolved
momenta, all the steps above only depend on this sum or difference. In the singular limits we
have u = αr. Therefore, the construction keeps r± u fixed in these limits. For our example, this
means that the single soft and single collinear limits coincide as well as the double soft and the
double collinear limit. For the double unresolved limits the resulting configuration is exactly the
underlying Born configuration with which we started the construction. This is in fact a general
feature: All double unresolved limits correspond to the underlying Born configuration. This will
allow us to discuss the pole cancellation for each Born phase space point separately in the next
section. Moreover, we expect that this new construction improves the convergence for invariant
mass distributions in absence of final state references, e.g., for pp→ tt̄, since the invariant mass of
the top pair is kept constant across all subtraction configurations.

In order to achieve these features, we have to construct the phase space in the laboratory frame,
while the previous construction was done the CMS frame. Moreover, the original ’t Hooft-Veltman
corrections are spoiled since they depend on the phase space parametrisation. We discuss their
rederivation in the next section using a new approach.

4. Rederivation of a four-dimensional formulation

In general, it is advantageous to formulate a subtraction scheme in four space-time dimensions
in the sense that the momenta and polarisation vectors of resolved particles are treated as four-
dimensional. One tremendous advantage is that in this way we can avoid having to use higher
orders in ε of matrix elements, which would cancel in the final result anyway. The second major
argument for a four-dimensional formulation is the dimensionality of the phase space integrals.
In CDR the number of dimensions that we have to explicitly parametrise and integrate over grows
with the final state multiplicity. In the ’t Hooft-Veltman scheme, where we only treat the unresolved
particles as d-dimensional, we never need more than six-dimensional momenta at NNLO.

For many other subtraction schemes, a four-dimensional formulation is relatively straight-
forward, since after UV renormalisation dimensional regularisation is only necessary in order to
regulate and cancel the IR singularities. Poles in the regulator ε appear explicitly from loop inte-
grals in the virtual contributions and after phase space integration in the real contributions. If the
unresolved phase space is integrated over analytically, the poles can be cancelled and the remain-
ing terms can be evaluated in four dimensions. Here, however, we choose to work with truncated
Laurent series in ε and to calculate the series coefficients numerically.

6
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When treating the momenta as four-dimensional, we face the challenge that the only resolved
momenta are four-dimensional but the unresolved momenta still have to be treated in d dimensions.
For example, in the single collinear sector, for r ‖ u the combined momentum r+u must be treated
as four-dimensional, while in the soft limit of u the momentum u is d-dimensional and r is four-
dimensional. If a contribution is free of poles in ε by construction, like σ̂RR

F , σ̂RV
F and σ̂VV

F , we
can simply evaluate it in four dimensions, effectively setting ε = 0. In other contributions, we can
use the measurement functions to force all resolved momenta to be four-dimensional. We use a
replacement along the lines of

Fn→ Fn

(
µ2

ReγE

4π

)−(n−1)ε
[

n−1

∏
i=1

δ
(−2ε)(qi)

]
, (4.1)

which forces the (−2ε)-dimensional components of the qi to zero. Here, the qi are the momenta
of the resolved final state particles. If the reference momentum is part of the final state, we have
to replace the qi by the appropriate resolved combination of momenta, e.g. δ (−2ε)(r + u) in the
example discussed above. More details on this procedure can be found in [88].

By replacing the measurement function as in Eq. (4.1), we introduce modifications of order
O (ε). Therefore, it is necessary that we only modify combinations of contributions which are
separately finite. This is the case for the combinations σ̂U = σ̂R

U + σ̂V
U + σ̂C and σ̂FR = σ̂RV

FR + σ̂VV
FR +

σ̂C2
FR , which also all come with the n particle measurement function Fn. However, for σ̂SU = σ̂RR

SU +

σ̂RV
SU + σ̂C1

SU and σ̂DU = σ̂RR
DU + σ̂RV

DU + σ̂C1
DU + σ̂VV

DU + σ̂C2
DU the poles only cancel in the combination

σ̂SU + σ̂DU and σ̂SU contains terms with both Fn and Fn+1. This poses a problem to our procedure
since the replacement in Eq. (4.1) is not consistent between Fn and Fn+1. Therefore, it is necessary
to first find correction terms CtHV that make σ̂SU−CtHV and σ̂DU +CtHV separately finite and then
apply the replacement to these combinations separately. Roughly speaking, the idea is to move all
divergent parts of σ̂SU that come with Fn to σ̂DU before applying the ’t Hooft-Veltman scheme.

To find these corrections CtHV, we start from σ̂SU, which can be written as

σ̂SU = ∑
c∈{RR,RV,C1}

∫
dΦn+1(Ic

n+1Fn+1 + Ic
nFn) . (4.2)

Here, dΦn+1 is the phase space integral of the resolved particles. We use the placeholders Ic
n+1 and

Ic
n for all terms that come with the n+1 and n particle measurement functions, respectively. They

can still contain additional integrations, like convolutions for C1 or integrations over the phase
space of the unresolved particle in the case of RR.

Let us now consider different choices of measurement functions for a moment. If we choose a
set of measurement functions F̃{n,n+1,n+2} which requires n+1 resolved particles in the final state,
we effectively deal with an NLO calculation for an n+1 particle process, which also forces F̃n ≡ 0.
In this case, all of σ̂DU, σ̂FR and σ̂VV vanish identically since they involve only n particle final
states. The three SU contributions σ̂RR

SU , σ̂RV
SU and σ̂C1

SU take the role of σ̂R
U , σ̂V

U and σ̂C of a n+ 1
particle NLO calculation, respectively. Moreover, only the Ic

n+1 terms in Eq. (4.2) remain and we
retain

σ̃SU = ∑
c∈{RR,RV,C1}

∫
dΦn+1Ic

n+1F̃n+1 . (4.3)

7
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As long as the F̃ measurement functions define an infrared safe observable, the finiteness of the
NLO cross-section implies that the poles in ε of σ̃SU cancel between the three contributions. As
soon as we change back to the original F{n,n+1,n+2} measurement functions, the poles in σ̂SU reap-
pear. We learn from this that we only have to remove the “non-cancelling” divergences from σ̂SU

to make it finite. Additionally, we observe that those poles arise only from terms with n particle
measurement functions. Thus, they can simply be added to σ̂DU as discussed above.

The central task in the derivation of the ’t Hooft-Veltman corrections is to identify and extract
the “non-cancelling” divergences of σ̂SU. Again, we make use of the measurement functions for
this. We introduce parametrised measurement functions,

Fα
n+1 = Fn+1θ

(
min

i, j
ηi j−α

)
θ

(
min

i

u0
i

Enorm
−α

)
, (4.4)

which depend on an auxiliary parameter α . The normalisation Enorm is arbitrary, but fixed for
the whole process. For α = 0 the parametrised measurement functions correspond exactly to the
original measurement functions, but for α > 0 the step functions cut-off the double unresolved
limits, i.e. whenever the angular parameter ηi j =

1
2(1− cosθi j) between any two massless partons

i and j vanishes or if the normalised energy of any massless parton goes to zero. Thus, for α > 0
they correspond to an NLO measurement function.

Since we know that the poles of the Ic
n+1 terms cancel for NLO measurement functions, we

can subtract a zero from σ̂SU by subtracting only the pole terms of Ic
n+1,

σ
c
SU−I α

c =
∫

dφn+1
(
Ic
n+1Fn+1 + Ic

nFn− [Ic
n+1]ε−2,ε−1Fα

n+1
)
. (4.5)

This does not change σ̂SU after summing over the contributions c ∈ {RR,RV,C1}. After some
rearrangements it is possible to extract the non-cancelling part

Nc(α) =
∫

dΦn+1[Ic
n]ε−2,ε−1Fnθ

(
min

i, j
ηi j−α

)
θ

(
min

i

u0
i

Enorm
−α

)
. (4.6)

If we take the limit α → 0, logarithmic divergences in α appear. However, it is possible to analyt-
ically extract and cancel them. Afterwards it is possible to take the limit α → 0 in all remaining
terms and thereby remove the dependence on the auxilliary parameter α entirely. An extended
discussion of this procedure will be given elsewhere. The remaining terms constitute exactly the
sought-after ’t Hooft-Veltman corrections CtHV. After subtracting them from σ̂SU and adding them
to σ̂DU, these contributions are separately finite and can be treated in the ’t Hooft-Veltman scheme.
While this procedure is inspired by slicing methods, it is applied only in the derivation of the
correction terms and no dependence on the parameter α remains in the final result.

As a demonstration, that this procedure indeed works, let us take the example processes gg→
tt̄g and gg→ ggg without massless quarks at NNLO. We make use of the fact that the new phase
space construction allows us to keep the Born phase space configuration fixed while integrating
over the unresolved phase space of all double unresolved configurations, i.e. up to two additional
unresolved partons. Fig. 1 shows the cancellation of the ε−4 to ε−1 poles for a fixed Born phase
space point. We plot the size of each contribution to σ̂DU and their sum. The sum is compatible
with zero within the statistical errors of the Monte Carlo integration, indicated by the error bars.
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1 · 105

ε−1 ε−2 ε−3 ε−4

gg → ggg (NF = 0)

RR,DU
RV,DU
VV,DU
C1,DU
C2,DU

DU

Figure 1: Illustration of the pole cancellation for the processes gg→ tt̄g (left panel) and gg→ ggg (right
panel) at a fixed phase space point for the underlying Born process. For each order in the dimensional regu-
lator ε the size of the individual contributions (see text) is plotted, as well as their sum, which is compatible
with zero within the statistical errors of the Monte Carlo integration over the phase space of unresolved
particles.

The vertical axis is rescaled using sinh to show both positive and negative contributions at different
orders of magnitude. The values themselves have no physical meaning but only demonstrate the
pole cancellation. This shows that the subtraction scheme presented here works also for involved
massive and massless QCD final states.

5. Conclusions

In this article we have discussed recent developments in the sector-improved residue subtrac-
tion scheme. We have developed a new phase space construction which minimizes the number of
subtraction kinematics to reduce the probability of misbinning. Moreover, the scheme allows to
easily fix a Born phase space point while integrating over the unresolved part of the phase space.
This can be used for a pointwise check of pole cancellation. We also rederived the ’t Hooft-
Veltman corrections which allow for a four-dimensional treatment of all resolved momenta and
polarisations. Here, we made extensive use of the measurement functions to derive and calculate
the corrections. As an illustration, we finally considered two involved processes, gg→ tt̄g and
gg→ ggg, at NNLO and showed pole cancellation for a fixed Born configuration.
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