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MRK in N=4 SYM Robin Marzucca

1. Introduction

Vast progress in understanding the structure of the S-Matrix in N = 4 Super Yang-Mills
(SYM) theory has been made in recent years. Large part of this success has been due to the very
large amount of symmetries and special properties of the theory, which make it a prime candidate
for the search for general mathematical structures of gauge theory scattering amplitudes. In the
planar limit, the conformal symmetry of the theory closes with dual conformal symmetry to form an
infinite-dimensional Yangian-symmetry [1–4], which is often seen to be a criterion for integrability.
Since we currently do not know an all-order solution of planar N = 4 SYM, we would like to know
the scattering amplitudes in as many kinematical regimes as possible. One of them is a very special
kinematical limit, called the multi-Regge-limit, in which it was possible to compute amplitudes
with many external legs to very high orders in perturbation theory.

2. The Remainder Function in MRK

The dual conformal symmetry of planar N = 4 SYM is restrictive enough to fix all four- and
five-point amplitudes to all loop orders [5]. It is only at six points that we see for the first time the
appearance of the remainder function RN or the BDS normalized ratio RN , respectively [2, 3], and
we have

AN =

{
ABDS

N eRN , MHV
ABDS

N RN , otherwise,
(2.1)

where ABDS
N is the so-called BDS ansatz [5], which describes the amplitude exactly to all orders for

4 and 5 external legs. We will consider the color ordered scattering amplitude of N gluons with all
external momenta outgoing. Let us first define lightcone and complex transverse coordinates as

p± ≡ p0± pz, p≡ p⊥ = px + ipy. (2.2)

Then the scalar product of two vectors p,q is given by

2p ·q = p+q−+ p−q+−pq̄− p̄q. (2.3)

Let us further, without loss of generality, choose a reference frame such that the momenta p1, p2

of the two initial state gluons are aligned with the z-axis with pz
2 = p0

2, which yields p+1 = p−2 =

p1 = p2 = 0. Then the multi-Regge-limit [6] is defined as the limit where the remaining external
momenta pi, 3≤ i≤ N are strongly ordered in rapidity while having no hierarchy in the transverse
components, or equivalently

p+3 � ··· � p+N , |p3| ' · · · ' |pN |. (2.4)

As the initial gluons are barely deflected in this limit, their helicity must be conserved along their
path, so that the amplitude will only depend on the helicities h1, . . . ,hN−4 of the produced gluons.
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We will therefore often label the BDS normalized ratio R only with the helicities of the produced
gluons

Rh1,...,hN−4 =
AN(−,+,h1, . . . ,hN−4,+,−)

ABDS
N (−,+,h1, . . . ,hN−4,+,−) . (2.5)

The ratio Rh1,...,hN−4 = 1 in MRK in the Euclidean region. After analytically continuing the energy
components of the produced gluons, however, we find a non-trivial expression. Due to fixing a
hierarchy in the longitudinal component of the external momenta, the amplitude exhibits logarithms
logτi, with

τi = δi

√
|qi−1|2|qi+1|2|pi+3|2
|qi|4|pi+4|2

, (2.6)

where qi = xi+2−x1, δi = p+i+4/p+i+3→ 0, and where we define the dual coordinates xi via

pi+3 = xi+2−xi+1, i = 0, . . . ,N−4. (2.7)

These logarithms become very large as we approach the multi-Regge-limit and should therefore be
resummed, which yields

Rh1...hN−4 =1+aiπ

[
N−5

∏
k=1

+∞

∑
nk=−∞

(
zk

z̄k

) nk
2
∫ +∞

−∞

dνk

2π
|zk|2iνk

]

×
[

N−5

∏
k=1

e−Lkωk

]
χh1

1

[
N−5

∏
k=2

Chk
k−1,k

]
χ−hN−4

N−5 ,

(2.8)

where ωk,χ±k and C±i j are the BFKL eigenvalue, impact factor and central emission blocks re-
spectively and Lk = logτk + iπ . This is in accordance with the conjectured to factorization of the
remainder function in an auxillary space, also referred to as Fourier-Mellin space, to all orders in
perturbation theory into a small number of building blocks [7–9] which can be visualized as in
fig 1. The initial gluons are connected via impact factors χ to a radiated gluon and to a ladder of
Reggeon exchanges and central emission blocks C, with an additional gluon radiated from each
central emission block and a large logarithm logτk for each reggeized gluon. Expanding the result
perturbatively, we find at every loop order a polynomial in these large logarithms. Truncating this
expansion at the highest appearing order of logarithms, we get the leading logarithmic approxi-
mation (LLA) of the amplitude. For the remainder of this paper, we will focus on exactly this
approximation and comment on the extension beyond LLA in the end. The corresponding expres-
sion for the LLA remainder function can be obtained by replacing the building blocks in (2.6) by
their respective leading terms

ωk→−aEk χ±k → χ±0,k C±i j →C±0,i j (2.9)

Then the `-loop N-point remainder function takes the form

R(`)
N = 2πia` ∑

i1+···+iN−5=`−1

(
N−5

∏
k=1

logik τk

ik!

)
g(`,i1,...,iN−5)

h1...hN−4
(z1, . . . ,zN−5). (2.10)

2



P
o
S
(
L
L
2
0
1
8
)
0
2
6

MRK in N=4 SYM Robin Marzucca

p2 p3

p1 pN

p4

p5

pN−2

pN−1

ων1 τ1

ωνN−5 τN−5
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CνN−4,νN−5
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Figure 1: Visualization of BFKL factorization in Fourier-Mellin space.

Further, since the logarithms logτk capture the dependence of the amplitude on the longitudinal
part of the external momenta, the perturbative coefficients g(`;i1,...,iN−5)

h1...hN−4
depend only on the N− 2

transverse momenta p3, . . . ,pN . Let us further define the cross-ratios

zi =
(x1−xi+3)(xi+2−xi+1)

(x1−xi+1)(xi+2−xi+3)
(2.11)

for later convenience.

It is expected that amplitudes in MRK in N = 4 SYM can be expressed in terms of polyloga-
rithms Ga1,...,an(z) [11, 12]. These are defined via the recursion

Ga1,...,an(z) =
∫ z

0
dz

1
z−a1

Ga2,...,an(z) G(z) = 1 (2.12)

and
G0, . . . ,0︸ ︷︷ ︸

n times

(z) =
1
n!

logn(z). (2.13)

From the optical theorem, we can further learn about possible branch cuts of the amplitudes, namely
they originate from points at which virtual particles become on-shell. Since all particles in N = 4
SYM are massless, branch-cuts need to start at (xi−x j)

2 = 0. Going to MRK, this condition trans-
lates to branch-cuts starting at |xi−x j|2 = 0. Since |xi−x j|2 ≥ 0, this means that the perturbative
coefficients are single-valued functions. A more rigorous derivation based on symbols and cluster
algebras can be found in [10,12]. At this point it is convenient to introduce a basis of single-valued
functions to express the perturbative coefficients in. The so called single-valued polylogarithms
Ga1,...,an(z) [11] are linear combinations of polylogarithms in z and z̄, with z̄ being the complex
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conjugate of z, such that all branch-cuts cancel and they fulfil the same holomorphic differential
equation as regular polylogarithms,

∂zGa1,...,an(z) =
1

z−a1
Ga2,...,an(z). (2.14)

3. The Perturbative Coefficients

Expanding (2.6) in the coupling constant and comparing coefficients with (2.8), we can read
off the definition of the g(`,i1,...,iN−5)

h1...hN−4
and we find at LLA, i.e. for ∑ ik = `−1,

g(`,i1,...,iN−5)
h1...hN−4

=
(−1)N+1

2

[
N−5

∏
k=1

+∞

∑
nk=−∞

(
zk

z̄k

) nk
2
∫ +∞

−∞

dνk

2π
|zk|2iνk

]
ϖNE i1

1 . . .E iN−5
N−5 (3.1)

≡ (−1)N+1

2
FN [ϖNE i1

1 . . .E iN−5
N−5], (3.2)

where
ϖN = χh1

0,1Ch2
0,12 . . .C

hN−5
0,(N−6)(N−5)χ

−hN−4
0,N−5 (3.3)

is the vacuum ladder. Its name will become clear, after introducing a graphical representation for
the perturbative coefficients g(`,i1,...,iN−5)

h1...hN−4
. At LLA, the expansion of (2.6) is fixed up to how far we

expand the individual exponentials τaEk
k . We will therefore view the the leading term, i.e. with all

τaEk
k → 1, as a vacuum state and occurrences of Ek, coming from higher orders of the exponentials

as insertions. We can symbolize the vacuum state as a ladder of external gluons and insertions of
Ek as insertions into the faces of the diagram, as can be seen in fig. 2.

hN−4

hN−5

h2

h1

i1

iN−5

g(`;i1,...,iN−5)
h1...hN−4

= (−1)N+1

2 FN[ϖNE i1
1 . . .E iN−5

N−5 ] ≡

Figure 2: Graphical representation of perturbative coefficients.

Now that we have reviewed the structure of the remainder function in MRK in N = 4 SYM,
as well as its mathematical properties, we want to focus on how to compute the perturbative coef-
ficients in the next section.

4. Fourier-Mellin Convolutions

In this section, we will explain how to use convolutions to easily compute scattering ampli-
tudes in MRK. For this purpose, we will restrict ourselves to the MHV case for now and extend
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the concept to the non-MHV case afterwards. As we have seen in (2.6), the remainder function RN

corresponds to a multiple Fourier-Mellin transform

F [F(ν ,n)] =
∞

∑
n=−∞

∫ dν
2π

(
z
z̄

) n
2

|z|2iνF(ν ,n). (4.1)

Under this transformation, products are mapped onto convolutions, and we have

F [F ·G] = F [F ]∗F [G] =
1
π

∫ d2w
|w|2 F [F ](w)F [G]

( z
w

)
. (4.2)

This relation allows us to relate perturbative coefficients of different loop orders by repeatedly
extracting leading order BFKL eigenvalues Ei from the Fourier-Mellin integral (3.2), allowing us
to raise the loop order of a given perturbative coefficient by computing a convolution integral. At
seven points, for example, we have

g(`;i1,i2)+++ = g(`−1;i1−1,i2)
+++ ∗F [E1] = g(1;0,0)

+++ ∗F [E1]
∗i1 ∗F [E2]

∗i2 . (4.3)

The necessary ingredient, namely the Fourier-Mellin transform of the leading order BFKL eigen-
value,

F [Ek] =−
zk + z̄k

2|1− zk|2
, (4.4)

evaluates to a simple rational function. In addition to this, we will exploit the fact that the pertur-
bative coefficients are single-valued objects. It was shown that the integral over the whole complex
plain of a single-valued function f can be calculated by computing the holomorphic residues of a
single-valued anti-holomorphic primitive F of f [13],

∫ d2z
π

f (z) = Resz=∞F(z)−∑
i

Resz=aiF(z), ∂z̄F(z) = f (z), (4.5)

where {ai,∞} is the set of singularities of F . Close to any of these points, a single-valued function
F(z) can be expanded as

F(z) = ∑
k,m,n

cai
k,m,n log

∣∣∣∣1− z
ai

∣∣∣∣2 (z−ai)
m(z̄− āi)

n, z→ ai (4.6)

F(z) = ∑
k,m,n

c∞
k,m,n log

1
|z|2

1
zm

1
z̄n , z→ ∞. (4.7)

Then the holomorphic residue is defined as

Resz=aF(z)≡ ca
0,−1,0. (4.8)

With this at hand, once we know a starting point, e.g. the two-loop remainder function, we can
promote it to higher loops simply by convoluting it with F [Ek], which corresponds to a rather
straight-forward computation of residues.

5



P
o
S
(
L
L
2
0
1
8
)
0
2
6

MRK in N=4 SYM Robin Marzucca

5. Factorization

Expressing the perturbative coefficients in terms of the dual coordinates xi instead of the cross
ratios zi, we find that in certain cases the dependence on some of them drops out and we are left with
substantially simpler objects. In particular, it turns out that any perturbative coefficient with empty
faces and equal neighbouring helicities will simplify to a lower-point object [12]. The eight-point
perturbative coefficient g(5;3,0,1)

h1h h h2
for example reduces to the seven-point perturbative coefficient

g(5;3,1)
h1h h2

.

→

h2

h

h

h1

1

0

3

x3

x2

x1

h2

h

h1

1

3

x3

x1

Since the only insertions we can have at LLA are leading order BFKL eigenvalues Ek and
since at MHV all helicities are equal, we can conclude that at any given loop-order, the remainder
function RN can be expressed in terms of a finite number of perturbative coefficients. At three
loops, for example we find

R(3)
+···+ = ∑

1≤i≤N−5

1
2

logτ2
i g(3;2)

++ (xi)+ ∑
1≤i< j≤N−5

logτi logτ jg
(3;1,1)
+++ (xi,x j), (5.1)

where we decided to only label the remainder function by its helicity configuration and the number
of external legs is implicit.

6. Amplitudes Beyond MHV and LLA

Fourier-Mellin convolutions can also be used to flip the helicities of external particles. At
seven points, for example we have

F [χ−1 C+
12χ−2 ] = F

[
χ−1
χ+

1

]
∗F [χ+

1 C+
12χ−2 ], (6.1)

with

F

[
χ−1
χ+

1

]
=− z1

(1− z1)2 . (6.2)

We see that the relevant integration kernel for the convolutions is again a simple rational func-
tion. Note that the condition for a perturbative coefficient to simplify to a lower-point coefficient
included that the face with no insertions was bounded by two external lines with equal helicities.
This means that some amplitudes beyond MHV, e.g. the amplitude with alternating helicities, will
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not be reducible to lower-point objects. Most of them, like for example R(2)
−+···+ will however still

simplify drastically, like

R(2)
−+···+ = logτ1g(2;1)

−+ (x1)+ ∑
1≤i≤N−5

logτig
(2;0,1)
−++ (x1,xi). (6.3)

Beyond LLA, we will for the first time encounter corrections to the BFKL building blocks in
(2.6), the individual perturbative coefficients will however still correspond to Fourier-Mellin trans-
formations and hence they can be computed from a starting point using convolutions [14]. We will
however encounter additional insertions, both into the faces as well as vertices of our graphical
representation.

We have applied the described mathematical framework both at LLA and at NLLA. At LLA, we
have computed all MHV amplitudes through 5 loops, and all 8 point amplitudes through 4 loops
in all helicity configurations. At NLLA, we have computed all MHV 3 loop amplitudes and the 7
point amplitude in the MHV configuration through 5 loops and in the +−+ and −++ helicity
configurations through 3 and 4 loops, respectively.

7. Conclusions

We have presented a framework with which scattering amplitudes in MRK in N = 4 SYM
can easily be computed to high orders in perturbation theory and for many external particles. In
particular it is possible for the first time, at any order in perturbation theory, to compute an infinite
number of amplitudes, albeit in a special kinematical limit. By calculating a finite number of per-
turbative coefficients, we can immediately write down the remainder function for any number of
external particles. The framework is applicable for all helicity configurations as well as at LLA and
NLLA and it allowed us to completely classify the function space of scattering amplitudes within
these accuracies.

Beyond NLLA, we do not expect any conceptually new hurdles. Since the central emission block ,
as opposed to the impact factors and the BFKL eigenvalue, is only known to NLO, we have how-
ever not been able to test our framework there. It would certainly be interesting to check explicitly
whether it holds to all logarithmic accuracies and whether it is possible to determine the function
space of MRK to all orders.

8. Acknowledgements

This work is supported by the European Research Council (ERC) through the grants 637019
(MathAm) and 648630 (IQFT), and by the U.S. Department of Energy (DOE) under contract DE-
AC02-76SF00515.

7



P
o
S
(
L
L
2
0
1
8
)
0
2
6

MRK in N=4 SYM Robin Marzucca

References

[1] J. M. Drummond, J. Henn, V. A. Smirnov, and E. Sokatchev, Magic identities for conformal
four-point integrals, JHEP 01 (2007) 064, [hep-th/0607160].

[2] J. M. Drummond, J. Henn, G. P. Korchemsky, and E. Sokatchev, On planar gluon amplitudes/Wilson
loops duality, Nucl. Phys. B795 (2008) 52-68, [0709.2368].

[3] J. M. Drummond, J. Henn, G. P. Korchemsky, and E. Sokatchev, Conformal Ward identities for Wilson
loops and a test of the duality with gluon amplitudes, Nucl. Phys. B826 (2010) 337-364, [0712.1223].

[4] J. M. Drummond, J. M. Henn, and J. Plefka, Yangian symmetry of scattering amplitudes in N=4 super
Yang-Mills theory, JHEP 05 (2009) 046, [0902.2987].

[5] Z. Bern, L. J. Dixon, and V. A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric
Yang-Mills theory at three loops and beyond, Phys. Rev. D72 (2005) 085001, [hep-th/0505205].

[6] V. S. Fadin and L. N. Lipatov, BFKL equation for the adjoint representation of the gauge group in the
next-to-leading approximation at N=4 SUSY, Phys. Lett. B706 (2012) 470-476, [1111.0782].

[7] J. Bartels, L. N. Lipatov, and A. Sabio Vera, N=4 supersymmetric Yang Mills scattering amplitudes at
high energies: The Regge cut contribution, Eur. Phys. J. C65 (2010) 587-605, [0807.0894].

[8] L. N. Lipatov and A. Prygarin, BFKL approach and six-particle MHV amplitude in N=4 super
Yang-Mills, Phys. Rev. D83 (2011) 125001, [1011.2673].

[9] J. Bartels, A. Kormilitzin, L. N. Lipatov, and A. Prygarin, BFKL approach and 2→ 5 maximally
helicity violating amplitude in N = 4 super-Yang-Mills theory, Phys. Rev. D86 (2012) 065026,
[1112.6366].

[10] L. J. Dixon, C. Duhr, and J. Pennington, Single-valued harmonic polylogarithms and the multi-Regge
limit, JHEP 1210 (2012) 074, [1207.0186].

[11] F. C. Brown, Multiple zeta values and periods of moduli spaces M0,n(R), Annales Sci.Ecole
Norm.Sup. 42 (2009) 371, [math/0606419].

[12] V. Del Duca, S. Druc, J. Drummond, C. Duhr, F. Dulat, R. Marzucca, G. Papathanasiou, and B.
Verbeek, Multi-Regge kinematics and the moduli space of Riemann spheres with marked points, JHEP
08 (2016) 152, [1606.08807].

[13] O. Schnetz, Graphical functions and single-valued multiple polylogarithms, Commun. Num. Theor.
Phys. 08 (2014) 589-675, [1302.6445].

[14] V. Del Duca, S. Druc, J. Drummond, C. Duhr, F. Dulat, R. Marzucca, G. Papathanasiou, and B.
Verbeek, The seven-gluon amplitude in multi-Regge kinematics beyond leading logarithmic accuracy,
JHEP 1806 (2018) 116, [1801.10605].

8

http://xxx.lanl.gov/abs/hep-th/0607160
http://xxx.lanl.gov/abs/0709.2368
http://xxx.lanl.gov/abs/0712.1223
http://xxx.lanl.gov/abs/0902.2987
http://xxx.lanl.gov/abs/hep-th/0505205
http://xxx.lanl.gov/abs/1111.0782
http://xxx.lanl.gov/abs/0807.0894
http://xxx.lanl.gov/abs/1011.2673
http://xxx.lanl.gov/abs/1112.6366
http://xxx.lanl.gov/abs/1207.0186
http://xxx.lanl.gov/abs/math/0606419
http://xxx.lanl.gov/abs/1606.08807
http://xxx.lanl.gov/abs/1302.6445
https://arxiv.org/abs/1801.10605

