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1. Introduction

In this contribution, we report on the study of the next-to-next-to-leading-order (NNLO) vir-
tual corrections to the elastic scattering of muons and electrons in Quantum Electrodynamics
(QED), which has been presented in the two companion articles [1, 2]. In particular, we discuss the
analytic evaluation of the complete set of —planar and non-planar — two-loop four-point master in-
tegrals (MIs) that arise from Feynman diagrams of order o> [3]. The present results, together with
the known expression of two-loop QED three-point functions [4, 5, 6], make the analytic evaluation
of the NNLO virtual amplitude for pte scattering within reach, for instance, in the framework of the
adaptive integrand decomposition [7, 8], as discussed during this conference [9].

The NNLO QED corrections to tte — tte will play a crucial role in the interpretation of future
high-precision experiments like MUonE, recently proposed at CERN, which aims at measuring the
cross section of the elastic scattering of high-energy muons on atomic electrons as a function of
the negative squared momentum transfer [10, 11, 12] with statistical and systematic uncertainties
of the order of 10ppm. This measurement will provide the running of the effective electromag-
netic coupling in the spacelike region and, as a result, an independent determination of the leading
hadronic contribution to the muon g-2, which is expected to be competitive with the precision of
the traditional dispersive calculations (see [13] for a review).

The same set of MIs required for e scattering will allow the determination of the NNLO QED
corrections to the crossing-related process ete™ — u™u~. The latter will be relevant for some of
the high-precision studies planned at upcoming low-energy e"e~ experiments, like Belle-II and
VEPP-2000, which will target the forward-backward asymmetry [14] in muon pair production and
the determination of the R(s)-ratio [15, 16].

In addition, the hereby computed MIs constitute a subset of those needed for the complete
QCD corrections to the t7-pair production at hadron colliders [17, 18, 19, 20, 21] that extends,
together with the recent results of [22, 23], the available analytic results [24, 25, 26, 27] to planar
and non-planar subleading color contributions.

Given the hierarchy between the electron mass m, and the muon mass m, m,/m ~ 5 - 1073,
we work in the approximation m, = 0. We use integration-by-parts identities (IBPs) [28, 29, 30] in
order to identify a set MIs, which we analytically computed by means of the differential equations
(DEQs) method [31, 32, 33]. The solution of the system of DEQs for small values of € = (4 —d)/2
in terms of generalised polylogarithms (GPLs) [34, 35, 36, 37] is facilitated by the identification of
a canonical basis of MIs, in the sense of [38]. Such basis is determined trough a well consolidated
procedure, based on the Magnus exponential [39, 40], which has been successfully applied in the
context of multi-loop integrals involving several kinematic scales [39, 40, 41, 42, 1]. We addressed
the challenging determination of the boundary conditions of the DEQs by exploting either the reg-
ularity conditions at pseudo-thresholds or the expression of auxiliary integrals, which are obtained
by solving simpler systems of DEQs.

This presentation is organised as follows: in section 2 we classify the relevant four-point
integral families, in section 3 we discuss the solution of the DEQs for the associated set of Mls
and, in section 4, we address the numerical evaluation of the result. We draw our conclusions in
section 5.
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2. Integral families

We study the box-type two-loop corrections to the scattering process U™ (p1) +e (p2) —
e~ (p3) + 1t (p4), with kinematics specified by

2 2 2 2 2
pi=py=m", p;=p3=0,

s=(p1+p2)?, t=(p—p3)*. u=(p1—p3)*=2m"—t—s, (2.1

where m is the muon mass. Representative Feynman diagrams of the 10 relevant four-point topolo-
gies T; are shown in figure 1. All these topologies can be organised into 3 distinct integral families
of the type

I[d](al,...,ag)z/cgl:lc% A 2.2)

aj ag o
DY ... D§

where k| and k; are the loop momenta and D; correspond to inverse scalar propagators. The inte-
gration measure is defined as

—~ dk m?\ ¢
a7
k= ind/2T (,u2> ’ 2.3)

with u being the "t Hooft scale of dimensional regularisation and I'e =T'(1+¢€). For each individual
family, the set of inverse propagators is chosen as follows:

e The first (planar) integral family, which includes the topologies 71, 15, T3, T7 and Tg of figure
1, is identified by

Dy =ki—-m* Dy=ki—m* Ds=(ki+p1)* Dys=(katp1)?
Ds=(ki+p1+p2)°*, D= (ka+pi+p2)’, Di=(ki—k)*
Dg = (ki +pa)?, Do = (ka+ps)* . 2.4

IBPs, implemented through the computer code Reduze [43], reduce the integrals that be-
long to this family to 34 Mls, which can be chosen as shown in figure 2. In our graphical
conventions, the MIs are represented by diagrams where thick lines stand for massive muon
propagators, whereas thin lines stand for massless particles (electron, photon).

e The second (planar) integral family, which includes the topologies 74, Ts, Ty and T1¢ depicted
in figure 1, is defined by

D=k —m? Dy=k, Di=(ka+p2)? Ds=(ki+p2)?
Ds = (ka+p2—p3)*, De=(ki+pr—p3)>—m*, D= (ki—pi)?
Ds = (ky—p1)>—m*, Do=(ki—k))*—m> . (2.5)

The integral basis of this family contains 42 Mls. We refer the reader to [1] for the explicit
definition of the basis chosen in this computation.
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e For the third (non-planar) integral family, which corresponds to the topology T of figure 1,
the inverse propagators are chosen to be

D, = k% *mz, D, = k§7 D3 = (kZ +P2)2, Dy = (kl +p2>27

Ds = (ky+p2—p3)*, Dg=(ki+ps—p3)>—m* D= (ki—p1)?
Dy = (ky—p1)> —m?, Do= (ki —ko)>—m* . (2.6)

A basis of the 44 MIs that belong to this family is given in [2].

e% : ée >E§< /\V;<
1% ya 12 1z 2 1z

T Ty T3
i u [l e [l R
Ty Ts Ts
€ e & e € e & e
1t p 1 n 1 n 1t u
T Ts Ty To

Figure 1: Two-loop four-point topologies for pLe scattering.

3. Differential equations

In order to determine the analytic expression of MlIs identified through IBPs reduction, we solve
their DEQs in the independent kinematic invariants s and # and m?. These three dimensionful pa-
rameters can be combined into two independent dimensionless variables x; and x; that parametrise
(up to a trivial scaling factor) the full dependence of the MIs on the kinematics. A suitable choice
of the differentiation variables x; can greatly simplify the determination of MIs, as it can be used
to remove (or, at least, simplify) non-rational terms that can appear in the DEQs. For the integrals
under study, we found that the following variable definition leads to a completely rational system
of DEQs:

e For the two planar integral families defined in eq. (2.4)-(2.5) we introduce (x1,x2) = (x,y),
with

X, = . 3.1
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e For the non-planar integral family defined in eq. (2.6) we choose (x1,x2) = (z,y), with

u—m? 7 t o (1-y)?

; (3.2)

s—m2  w’ m?: y

where the constraint s + 7 + u = 2m? is understood.

3.1 Canonical systems of differential equations

For each integral family, we derived canonical systems of DEQs according to the algorithm de-
scribed in [39, 40]: we start by empirically identifying a set of MlIs that fulfils system of DEQs
with a linear dependence on the regulating parameter €. For the first integral family, such set cor-
responds to the integrals depicted in figure 2, suitably combined with €-rational prefactors (we
refer the reader to [1, 2] for the explicit form of such combinations as well as for the definitions
of the integral basis for the other two families). Subsequently, we use the Magnus exponential
matrix in order to transform these sets of MIs to integral bases that obey canonical DEQs in both x;
and x,. For the case of canonical DEQs, the basis change obtained through the Magnus exponen-
tial is equivalent to the Wronskian matrix (formed by the solutions of the associated homogenous
equations), which has been shown to allow extensions to systems of DEQs involving elliptic solu-
tions [44, 45, 46]. Once combined into a single total differential, the canonical DEQs in x| and x;
read

dI(S,xl,XQ) zedA(xl,xz)I(e,xl,xz), (3.3)

where I is a vector that collects the MIs of a given integral family and
dA(x1,x2) =) M;dlog(n;(x1,x2)), (3.4)
i

with M being rational constant matrices. The arguments 7); of the dlog-form define the so-called
alphabet of the DEQs which, for the integrals under consideration, looks as follows:

e For the planar integral families of eq. (2.4)-(2.5) the alphabet is composed of 9 letters 1;(x,y),

m=x, m=1+x,

m=1-ux, 4=y,

ns=1+y, Me=1-y,, (3.5)
n=x+y, ng =1+xy,

Mo = l_y(l —x—y),
which are real and positive in the region x > 0A0 < y < 1 (that corresponds to s < 0At < 0).

e For the non-planar integral family of eq. (2.6) the alphabet is composed of 12 letters 1;(z,y),

m=y, Mm=1+y,
n3:1_y, N4 =2,
=1+z, =1-z,
UR UG (3.6)
N =z+w, ng=z—-Y,
719=Z2—y, nlozl—Y'i‘yz—Zzy

mi=1-3y+y" +2%, nu=22—y -y +y*2%,
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that are real and positive in the region 0 <y < 1 A/y <z < y/1—y+? (or, equivalently,
s<OAt<O0).

All MIs are normalised in such a way that they are finite in the € — 0 limit, in such a way that
I(x,x2) admits a Taylor expansion in €,

I(e,x;,x) =) & (ZA("i)(xhxz;xl,o,xzo)l(i) (xl,O,x270)) ; (3.7

n>0 i=0

where 10 (x1,0,X2,0) 18 a vector of boundary constants and A the weight-k operator

Y. _ CY. _
A (x1,X25 X1,0,X2,0) /ydA...dA, A (x1,x2; X1,0,%20) =1, (3.8)

k times

which iterates k ordered integrations of the matrix-valued 1-form dA along a path ¥ in the xjx;-
plane. Since both alphabets of eq.s (3.5)-(3.6) have algebraic roots, the iterated integrals (3.8)
can be directly expressed (by integrating on a piecewise smooth path which varies one variable
at a time) in terms of GPLs. For all the three integral families, the solutions of the system of
DEQs is derived in the unphysical region s < 0 At < 0, where —given the reality of the alphabets
of eq.s (3.5)-(3.6) — potential imaginary parts of the solution can originate from the integration
constants only. The expression of the MIs in the scattering region s > m> Am?> —s <t < 0, as well
in the kinematic regions relevant for crossing-related processes, can be subsequently obtained by
analytic continuation of our result.

3.2 Boundary constants

The iterative integration of eq. (3.3) leads to a general solution of the DEQs in terms of GPLs
that depends on arbitrary integration constants. The latter are determined by imposing a suitable
set of boundary conditions. On a limited number of cases, it was possible to fix the integration
constants by exploiting the knowledge of the analytic expression of the MIs in special kinematic
configurations, derived from either direct computation or from the solution of auxiliary, simpler,
system of DEQs. For the majority of the integrals, however, it was sufficient to impose the regular-
ity of the solution at pseudo-thresholds, i.e. singular points of the DEQs which do not correspond
to physical singularities of the integrals, in order to completely determine the boundary constants.
For the case under consideration, regularity conditions express the boundary constants as combina-
tions of GPLs of argument 1 and complex weights, which arise from the kinematic limits imposed
on the alphabets given in eq.s (3.5)-(3.6). We used GiNaC [47] to verify that, for each MI, at every
order in &, the corresponding combination of constant GPLs is proportional to a transcendentally
uniform polynomial combination of the constants 7, {; and log2.

4. Numerical evaluation

As a validation of our result, we numerically evaluated the analytic expression of all MIs
in the region s < 0 At < 0 by means of the GiNac library and checked them against independent
numerical calculations. All Mls, with the only exception of the four-point non-planar integrals
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Figure 2: The master integrals of the first integral family.
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that belong to the integral family defined in eq. (2.6), have been cross-checked against the results
provided by the code SecDec [48]. For the challenging numerical evaluation of the non-planar

integrals we resorted on a different strategy: after identifying an alternative set of quasi finite [49]

MlIs in d = 6, we evaluated their Feynman parametric representation by carrying out as many

analytic integrations as possible and by numerically evaluating the leftover integrals by means of

Gauss quadrature. Dimension-shifting identities and IBPs, implemented in LiteRed [50, 51],

establish analytical relations between this set of integrals and the original MIs computed around

d=4.
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5. Conclusions

In this talk, we reported on the analytic evaluation of the two-loop master integrals needed for
the NNLO virtual corrections to ue elastic scattering in QED that has been presented in [1, 2] .
In the massless electron approximation, we computed the master integrals through the differential
equations method, by using the Magnus exponential in order to identify a canonical set of master
integrals and by deriving boundary conditions from the regularity requirements at pseudothresh-
olds. The present results pave the way to the evaluation of the NNLO virtual amplitude, which
is currently under investigation [3, 9]. The two-loop amplitude will constitute an essential part of
the theoretical input required by the ambitious experimental goal of the MUonE project, which
will determine the leading hadronic contribution to the muon g — 2 by measuring the scattering
of high-energy muons on atomic electrons. By crossing symmetry, the considered integrals are
also relevant for muon-pair production at e e~ -colliders, as well as for the QCD corrections to
heavy-quark pair production at hadron colliders.
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